ﻻ يوجد ملخص باللغة العربية
Unconventional Weyl points with topological charges higher than 1 can transform into various complex unconventional Weyl exceptional contours under non-Hermitian perturbations. However, theoretical studies of these exceptional contours have been limited to tight-binding models. Here, we propose to realize unconventional Weyl exceptional contours in photonic continua -- non-Hermitian anisotropic chiral plasma, based on ab initio calculation by Maxwells equations. By perturbing in-plane permittivity, an unconventional Weyl point can transform into a quadratic Weyl exceptional circle, a Type-I Weyl exceptional chain with one chain point, a Type-II Weyl exceptional chain with two chain points, or other forms. Realistic metamaterials with effective constitutive parameters are proposed to implement these unconventional Weyl exceptional contours. Our work paves a way toward exploration of exotic physics of unconventional Weyl exceptional contours in non-Hermitian topological photonic continua.
Engineered non-Hermitian systems featuring exceptional points can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, electronics, to atomic physics. Here we introduce and present non-Hermiti
The usual concepts of topological physics, such as the Berry curvature, cannot be applied directly to non-Hermitian systems. We show that another object, the quantum metric, which often plays a secondary role in Hermitian systems, becomes a crucial q
We investigate the effects of non-Hermiticity on topological pumping, and uncover a connection between a topological edge invariant based on topological pumping and the winding numbers of exceptional points. In Hermitian lattices, it is known that th
We study coupled non-Hermitian Rice-Mele chains, which consist of Su-Schrieffer-Heeger (SSH) chain system with staggered on-site imaginary potentials. In two dimensional (2D) thermodynamic limit, the exceptional points (EPs) are shown to exhibit topo
Alternating current RLC electric circuits form an accessible and highly tunable platform simulating Hermitian as well as non-Hermitian (nH) quantum systems. We propose here a circuit realization of nH Dirac and Weyl Hamiltonians subject to time-rever