ﻻ يوجد ملخص باللغة العربية
We combine a quantum dynamical propagator that explicitly accounts for quantum mechanical time ordering with optimal control theory. After analyzing its performance with a simple model, we apply it to a superconducting circuit under so-called Pythagorean control. Breakdown of the rotating-wave approximation is the main source of the very strong time-dependence in this example. While the propagator that accounts for the time ordering in an iterative fashion proves its numerical efficiency for the dynamics of the superconducting circuit, its performance when combined with optimal control turns out to be rather sensitive to the strength of the time-dependence. We discuss the kind of quantum gate operations that the superconducting circuit can implement including their performance bounds in terms of fidelity and speed.
In this work we analyze the implementation of a control-phase gate through the resonance between the $|11rangle$ and $|20rangle$ states of two statically coupled transmons. We find that there are many different controls for the transmon frequency tha
We propose an efficient numerical method to compute configuration averages of observables in disordered open quantum systems whose dynamics can be unraveled via stochastic trajectories. We prove that the optimal sampling of trajectories and disorder
Manipulate and control of the complex quantum system with high precision are essential for achieving universal fault tolerant quantum computing. For a physical system with restricted control resources, it is a challenge to control the dynamics of the
Efforts to scale-up quantum computation have reached a point where the principal limiting factor is not the number of qubits, but the entangling gate infidelity. However, the highly detailed system characterization required to understand the underlyi
The aim of this review is to provide quantum engineers with an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits. Over the past twenty years, the field has matured from a p