ترغب بنشر مسار تعليمي؟ اضغط هنا

Appearances can be deceiving: clear signs of accretion in the seemingly ordinary Sextans dSph

41   0   0.0 ( 0 )
 نشر من قبل Luis Cicuendez
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of clear observational signs of past accretion/merger events in one of the Milky Way satellite galaxies, the Sextans dwarf spheroidal (dSph). These were uncovered in the spatial distribution, internal kinematics and metallicity properties of Sextans stars using literature CTIO/DECam photometric and Magellan/MMFS spectroscopic catalogues. We find the spatial distribution of stars to vary as a function of the colour/metallicity, being rather regular and round for the blue (metal-poor) red giant branch and main-sequence turn-off stars but much more elliptical and irregularly shaped for the red (metal-rich) ones, with a distinct shell-like overdensity in the northeast side. We also detect kinematic anomalies, in the form of a ring-like feature with a considerably larger systemic line-of-sight velocity and lower metallicity than the rest of stars; even the photometrically selected component with a regular looking spatial distribution displays complex kinematics. With a stellar mass of just $sim5times10^{5} M_{odot}$, Sextans becomes the smallest galaxy presenting clear observational signs of accretion to date.



قيم البحث

اقرأ أيضاً

Context: White dwarfs (WDs) are important and abundant tools to study the structure and evolution of the Galactic environment. However, the multiplicity of WD progenitors is generally neglected. Specifically, a merger in a binary system can lead to a single WD, which could result in wrongly inferred quantities if only single stellar evolution (SSE) is considered. These mergers are linked to transients such as luminous red novae and Type Ia supernovae. Aims: We investigate the impact of binary evolution (BE) upon observable single WDs, and compare their properties to WDs formed through SSE. We assess the evolutionary channels and the age and mass distributions of the resulting single Wds. Methods: We employed texttt{SeBa} to model the evolution of single star and binary populations. We synthesised the observable single WD population within $100$ pc, including cooling and observational selection effects. Additionally, we constructed models with different evolution and primordial population properties to study the effects on the properties of the resulting single WDs. Results: White dwarfs from binary mergers make up about $10-30%$ of all observable single WDs and $30-50%$ of massive WDs. On average, individual WDs take $3.1-5$ times longer to form through BE than SE, and so appear ${sim} 1$ Gyr younger than they are if BE is ignored. In all models, the effect of mergers on the age distribution is clearly noticeable. The median age typically increases by $85-430$ Myr and $200-390$ Myr for massive WDs. Although abundant, we do not find evidence that WDs from mergers significantly alter the shape of the WD mass distribution. Conclusions: Assuming SSE for inferring properties of single WDs gives rise to intrinsic errors as single WDs can also be formed following a binary merger. Strategies for mitigating the effect of mergers on the WD age distributions are discussed.
We present the deep and wide $V$ and $I_c$ photometry of the Sextans dwarf spheroidal galaxy (dSph) taken by Suprime-Cam imager on the Subaru Telescope, which extends out to the tidal radius. The colour-magnitude diagram (CMD) reaches two magnitudes below the main sequence (MS) turn-off, showing a steep red giant branch, blue and red horizontal branch (HB), sub-giant branch (SGB), MS, and blue stragglers (BS). We construct the radial profile of each evolutionary phase and demonstrate that blue HB stars are more spatially extended, while red HB stars are more centrally concentrated than the other components. The colour distribution of SGB stars also varies with the galactocentric distance; the inner SGB stars shift bluer than those in the outskirt. The radial differences in the CMD morphology indicate the existence of the age gradient. The relatively younger stars ($sim10$ Gyr) are more centrally concentrated than the older ones ($sim13$ Gyr). The spatial contour maps of stars in different age bins also show that the younger population has higher concentration and higher ellipticity than the older one. We also detect the centrally concentrated bright BS stars, the number of which is consistent with the idea that a part of these stars belongs to the remnant of a disrupted star cluster discovered in the previous spectroscopic studies.
We present and discuss the stellar kinematics and populations of the S0 galaxy FCC 170 (NGC 1381) in the Fornax cluster, using deep MUSE data from the Fornax 3D survey. We show the maps of the first four moments of the stellar line-of-sight velocity distribution and of the mass-weighted mean stellar age, metallicity and [Mg/Fe] abundance ratio. The high-quality MUSE stellar kinematic measurements unveil the structure of this massive galaxy: a nuclear disk, a bar seen as a boxy bulge with a clear higher-velocity-dispersion X shape, a fast-rotating and flaring thin disk and a slower rotating thick disk. Whereas their overall old age makes it difficult to discuss differences in the formation epoch between these components, we find a clear-cut distinction between metal-rich and less [Mg/Fe]-enhanced populations in the thin-disk, boxy-bulge and nuclear disk, and more metal-poor and [Mg/Fe]-enhanced stars in the thick disk. Located in the densest region of the Fornax cluster, where signs of tidal stripping have been recently found, the evolution of FCC 170 might have been seriously affected by its environment. We discuss the possibility of its pre-processing in a subgroup before falling into the present-day cluster, which would have shaped this galaxy a long time ago. The thick disk displays a composite star formation history, as a significant fraction of younger stars co-exist with the main older thick-disk population. The former sub-population is characterized by even lower-metallicity and higher-[Mg/Fe] values, suggesting that these stars formed later and faster in a less chemically evolved satellite, which was subsequently accreted. Finally, we discuss evidence that metal-rich and less [Mg/Fe]-enhanced stars were brought in the outer parts of the thick disk by the flaring of the thin disk.
We present new XSHOOTER spectra of NLTT5306, a 0.44 $pm$ 0.04msun white dwarf in a short period (101,min) binary system with a brown dwarf companion that is likely to have previously undergone common envelope evolution. We have confirmed the presence of H$alpha$ emission and discovered Na I absorption associated with the white dwarf. These observations are indicative of accretion. Accretion is typically evidenced by high energy emission in the UV and X-ray regime. However our textit{Swift} observations covering the full orbital period in three wavebands (uvw1, uvm2, uvw2) revealed no UV excess or modulation. We used the X-ray non-detection to put an upper limit on the accretion rate of 2$times$10$^{-15}$msun yr$^{-1}$. We compare NLTT5306 to similar accreting binaries with brown dwarf donors and suggest the inferred accretion rate could be from wind accretion or accretion from a debris/dust disk. The lack of evidence for a disk implies NLTT5306 is magnetically funnelling a weak wind from a potentially low gravity brown dwarf. The upper limit on the accretion rate suggests a magnetic field as low as 0.45,kG would be sufficient to achieve this. If confirmed this would constitute the first detection of a brown dwarf wind and could provide useful constraints on mass loss rates.
We present a detailed study of the stellar and HI structure of the dwarf irregular galaxies SextansA and SextansB, members of the NGC3109 association. We use newly obtained deep (r~26.5) and wide field g,r photometry to extend the Surface Brightness (SB) profiles of the two galaxies down to mu_V~ 31.0 mag/arcsec^2. We find that both galaxies are significantly more extended than what previously traced with surface photometry, out to ~4 kpc from their centers along their major axis. Older stars are found to have more extended distribution with respect to younger populations. We obtain the first estimate of the mean metallicity for the old stars in SexB, from the color distribution of the Red Giant Branch, <[Fe/H]>=-1.6. The SB profiles show significant changes of slope and cannot be fitted with a single Sersic model. Both galaxies have HI discs as massive as their respective stellar components. In both cases the HI discs display solid-body rotation with maximum amplitude of ~50 km/s (albeit with significant uncertainty due to the poorly constrained inclination), implying a dynamical mass ~10^{9}~M_sun, a mass-to-light ratio M/L_V~25 and a dark-to-barionic mass ratio of ~10. The distribution of the stellar components is more extended than the gaseous disc in both galaxies. We find that the main, approximately round-shaped, stellar body of Sex~A is surrounded by an elongated low-SB stellar halo that can be interpreted as a tidal tail, similar to that found in another member of the same association (Antlia). We discuss these, as well as other evidences of tidal disturbance, in the framework of a past passage of the NGC3109 association close to the Milky Way, that has been hypothesized by several authors and is also supported by the recently discovered filamentary configuration of the association itself.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا