ترغب بنشر مسار تعليمي؟ اضغط هنا

Population gradient in Sextans dSph: Comprehensive mapping of a dwarf galaxy by Suprime-Cam

152   0   0.0 ( 0 )
 نشر من قبل Sakurako Okamoto
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the deep and wide $V$ and $I_c$ photometry of the Sextans dwarf spheroidal galaxy (dSph) taken by Suprime-Cam imager on the Subaru Telescope, which extends out to the tidal radius. The colour-magnitude diagram (CMD) reaches two magnitudes below the main sequence (MS) turn-off, showing a steep red giant branch, blue and red horizontal branch (HB), sub-giant branch (SGB), MS, and blue stragglers (BS). We construct the radial profile of each evolutionary phase and demonstrate that blue HB stars are more spatially extended, while red HB stars are more centrally concentrated than the other components. The colour distribution of SGB stars also varies with the galactocentric distance; the inner SGB stars shift bluer than those in the outskirt. The radial differences in the CMD morphology indicate the existence of the age gradient. The relatively younger stars ($sim10$ Gyr) are more centrally concentrated than the older ones ($sim13$ Gyr). The spatial contour maps of stars in different age bins also show that the younger population has higher concentration and higher ellipticity than the older one. We also detect the centrally concentrated bright BS stars, the number of which is consistent with the idea that a part of these stars belongs to the remnant of a disrupted star cluster discovered in the previous spectroscopic studies.



قيم البحث

اقرأ أيضاً

We have surveyed a complete extent of Leo A - an apparently isolated gas-rich low-mass dwarf irregular galaxy in the Local Group. The $B$, $V$, and $I$ passband CCD images (typical seeing $sim$0.8) were obtained with Subaru Telescope equipped with Su prime-Cam mosaic camera. The wide-field ($20 times 24$) photometry catalog of 38,856 objects ($V sim 16-26$ mag) is presented. This survey is also intended to serve as a finding chart for future imaging and spectroscopic observation programs of Leo A.
A large extension of the Sextans dwarf spheroidal galaxy, 7 sq degrees, has been surveyed for variable stars using the Dark Energy Camera at the Blanco Telescope in Cerro Tololo Inter-American Observatory, Chile. We report 7 Anomalous Cepheids, 199 R R Lyrae stars and 16 dwarf Cepheids in the field. This is only the fifth extra-galactic systems in which dwarf Cepheids have been systematically searched. Henceforth, the new stars increase the census of stars coming from different environments that can be used to asses the advantages and limitations of using dwarf Cepheids as standard candles in populations for which the metallicity is not necessarily known. The dwarf Cepheids found in Sextans have a mean period of 0.066 days, and a mean $g$ amplitude of 0.87 mags. They are located below the horizontal branch spanning a range of 0.8 mag, between $21.9 < g < 22.7$. The number of dwarf Cepheids in Sextans is low compared with other galaxies such as Carina, which have a strong intermediate-age population. On the other hand, the number and ratio of RR Lyrae stars to dwarf Cepheids is quite similar to Sculptor, a galaxy which, as Sextans, is dominated by an old stellar population. The dwarf Cepheid stars found in Sextans follow a well constrained Period-Luminosity relationship with an rms=0.05 mag in the $g$ band, which was set up by anchoring to the distance modulus given by the RR Lyrae stars. Although the majority of the variable stars in Sextans are located toward the center of the galaxy, we have found 2 RR Lyrae stars and 1 Anomalous Cepheid in the outskirts of the galaxy, which may be extra-tidal stars and suggest this galaxy may be undergoing tidal destruction. These possible extra-tidal variable stars share the same proper motions as Sextans, as seen by recent Gaia measurements.
113 - M. Tanaka , M. Chiba , Y. Komiyama 2009
We present a photometric survey of the stellar halo of the Andromeda galaxy, using Suprime-Cam on the Subaru Telescope. A detailed analysis of VI color-magnitude diagrams of the resolved stellar population is used to measure properties such as line-o f-sight distance, surface brightness, metallicity, and age, and these are used to isolate and characterize different components of the M31 halo: (1) several substructures, and (2) the smooth halo. First, we study M31s halo substructure along the north-west/south-east minor axis out to R ~ 100 kpc and the south-west major axis region at R ~ 60 kpc. We confirm two substructures in the south-east halo reported by Ibata et al. (2007) and discover two overdense substructures in the north-west halo. We investigate the properties of these four substructures as well as other structures including the western shelf and find that differences in stellar populations among these systems, thereby suggesting each has a different origin. Our statistical analysis implies that the M31 halo as a whole may contain at least 16 substructures, each with a different origin. Second, we investigate the properties of an underlying, smooth and extended halo component out to R > 100 kpc. We find that the surface density of this smooth halo can be fitted to a Hernquist model of scale radius ~ 17 kpc or a power-law profile with ~ R^{-2.17 +/- 0.15}. In contrast to the relative smoothness of the halo density profile, its metallicity distribution appears to be spatially non-uniform with non-monotonic variations with radius, suggesting that the halo population has not had sufficient time to dynamically homogenize the accreted populations. Further implications for the formation of the M31 halo are discussed.
As part of our survey of galactic stellar halos, we investigate the structure and stellar populations of the northern outer part of the stellar halo in NGC55, a member galaxy of the Sculptor Group, using deep and wide-field V- and I-band images taken with Subaru/Suprime-Cam. Based on the analysis of the color-magnitude diagrams (CMDs) for red-giant-branch (RGB) stars, we derive a tip of RGB (TRGB)-based distance modulus to the galaxy of (m-M)_0 = 26.58 +/- 0.11 (d = 2.1 +/- 0.1 Mpc). From the stellar density maps, we detect the asymmetrically disturbed, thick disk structure and two metal-poor overdense substructures in the north region of NGC55, which may correspond to merger remnants associated with hierarchical formation of NGC55s halo. In addition, we identify a diffuse metal-poor halo extended out to at least z ~ 16 kpc from the galactic plane. The surface-brightness profiles toward the z-direction perpendicular to the galactic plane suggest that the stellar density distribution in the northern outer part of NGC55 is described by a locally isothermal disk at z <~ 6 kpc and a likely diffuse metal-poor halo with V-band surface brightness of mu_V >~ 32 mag arcsec^{-2}, where old RGB stars dominate. We derive the metallicity distributions (MDs) of these structures on the basis of the photometric comparison of RGB stars with the theoretical stellar evolutionary models. The MDs of the thick disk structures show the peak and mean metallicity of [Fe/H]peak ~ -1.4 and [Fe/H]mean ~ -1.7, respectively, while the outer substructures show more metal-poor features than the thick disk structure. Combined with the current results with our previous study for M31s halo, we discuss the possible difference in the formation process of stellar halos among different Hubble types.
We present the analysis of the FLAMES dataset targeting the central 25 arcmin region of the Sextans dSph. This dataset is the third major part of the high resolution spectroscopic section of the ESO large program 171.B-0588(A) obtained by the Dwarf g alaxy Abundances and Radial-velocities Team (DART). Our sample is composed of red giant branch stars down to the level of the horizontal branch in Sextans. It allows to address questions related to both stellar nucleosynthesis and galaxy evolution. We provide metallicities for 81 stars, which cover the wide [Fe/H]=$-$3.2 to $-$1.5 dex range. The abundances of 10 other elements are derived: Mg, Ca, Ti, Sc, Cr, Mn, Co, Ni, Ba, and Eu. Despite its small mass, Sextans is a chemically evolved system, with evidence for the contribution of core-collapse and Type Ia supernovae as well as low metallicity AGBs. This new FLAMES sample offers a sufficiently large number of stars with chemical abundances derived at high accuracy to firmly establish the existence of a plateau in [$alpha$/Fe] at $sim 0.4$ dex, followed by a decrease above [Fe/H]$sim-2$ dex. This is in stark similarity with the Fornax and Sculptor dSphs despite their very different masses and star formation histories. This suggests that these three galaxies had very similar star formation efficiencies in their early formation phases, probably driven by the early accretion of smaller galactic fragments, until the UV-background heating impacted them in different ways. The parallel between the Sculptor and Sextans dSph is also striking when considering Ba and Eu. Finally, as to the iron-peak elements, the decline of [Co/Fe] and [Ni/Fe] above [Fe/H]$sim -2$ implies that the production yields of Ni and Co in SNeIa is lower than that of Fe. The decrease in [Ni/Fe] favours models of SNeIa based on the explosion of double degenerate sub-Chandrasekhar mass white dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا