ترغب بنشر مسار تعليمي؟ اضغط هنا

Looks can be deceiving: underestimating the age of single white dwarfs due to binary mergers

56   0   0.0 ( 0 )
 نشر من قبل Karel Temmink
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: White dwarfs (WDs) are important and abundant tools to study the structure and evolution of the Galactic environment. However, the multiplicity of WD progenitors is generally neglected. Specifically, a merger in a binary system can lead to a single WD, which could result in wrongly inferred quantities if only single stellar evolution (SSE) is considered. These mergers are linked to transients such as luminous red novae and Type Ia supernovae. Aims: We investigate the impact of binary evolution (BE) upon observable single WDs, and compare their properties to WDs formed through SSE. We assess the evolutionary channels and the age and mass distributions of the resulting single Wds. Methods: We employed texttt{SeBa} to model the evolution of single star and binary populations. We synthesised the observable single WD population within $100$ pc, including cooling and observational selection effects. Additionally, we constructed models with different evolution and primordial population properties to study the effects on the properties of the resulting single WDs. Results: White dwarfs from binary mergers make up about $10-30%$ of all observable single WDs and $30-50%$ of massive WDs. On average, individual WDs take $3.1-5$ times longer to form through BE than SE, and so appear ${sim} 1$ Gyr younger than they are if BE is ignored. In all models, the effect of mergers on the age distribution is clearly noticeable. The median age typically increases by $85-430$ Myr and $200-390$ Myr for massive WDs. Although abundant, we do not find evidence that WDs from mergers significantly alter the shape of the WD mass distribution. Conclusions: Assuming SSE for inferring properties of single WDs gives rise to intrinsic errors as single WDs can also be formed following a binary merger. Strategies for mitigating the effect of mergers on the WD age distributions are discussed.

قيم البحث

اقرأ أيضاً

Classical main-sequence chemically peculiar stars show light variability that originates in surface abundance spots. In the spots, the flux redistribution due to line (bound-bound) and bound-free transitions is modulated by stellar rotation and leads to light variability. White dwarfs and hot subdwarfs may also have surface abundance spots either owing to the elemental diffusion or as a result of accretion of debris. We model the light variability of typical white dwarfs and hot subdwarfs that results from putative surface abundance spots. We show that the spots with radiatively supported iron overabundance may cause observable light variability of hot white dwarfs and subdwarfs. Accretion of debris material may lead to detectable light variability in warm white dwarfs. We apply our model to the helium star HD 144941 and conclude that the spot model is able to explain most of observed light variations of this star.
We use 156 044 white dwarf candidates with $geq5sigma$ significant parallax measurements from the Gaia mission to measure the velocity dispersion of the Galactic disc; $(sigma_U,sigma_V,sigma_W) = (30.8, 23.9, 20.0)$ km s$^{-1}$. We identify 142 obje cts that are inconsistent with disc membership at the $>5sigma$ level. This is the largest sample of field halo white dwarfs identified to date. We perform a detailed model atmosphere analysis using optical and near-infrared photometry and parallaxes to constrain the mass and cooling age of each white dwarf. The white dwarf cooling ages of our targets range from 7 Myr for J1657+2056 to 10.3 Gyr for J1049-7400. The latter provides a firm lower limit of 10.3 Gyr for the age of the inner halo based on the well-understood physics of white dwarfs. Including the pre-white dwarf evolutionary lifetimes, and limiting our sample to the recently formed white dwarfs with cooling ages of $<500$ Myr, we estimate an age of $10.9 pm 0.4$ Gyr (internal errors only) for the Galactic inner halo. The coolest white dwarfs in our sample also give similar results. For example, J1049-7400 has a total age of 10.9-11.1 Gyr. Our age measurements are consistent with other measurements of the age of the inner halo, including the white dwarf based measurements of the globular clusters M4, NGC 6397, and 47 Tuc.
98 - Maxim Lyutikov 2019
Mergers of white dwarfs (WDs) may lead to a variety of transient astrophysical events, SNIa being one possible outcome. Lyutikov & Toonen (2017, 2019) argued that mergers of WDs result, under various parameter regimes, in unusual central engine-power ed supernova and a type of short Gamma Ray Bursts that show extended emission tails. Observations by Gvaramadze et al. (2019) of the central star and the nebula J005311 match to the details the model of Lyutikov & Toonen (2017, 2019) for the immediate product of a merger of a heavy ONeMg WD with CO WD (age, luminosity, stellar size, hydrogen deficiency and chemical composition).
We report the discovery of clear observational signs of past accretion/merger events in one of the Milky Way satellite galaxies, the Sextans dwarf spheroidal (dSph). These were uncovered in the spatial distribution, internal kinematics and metallicit y properties of Sextans stars using literature CTIO/DECam photometric and Magellan/MMFS spectroscopic catalogues. We find the spatial distribution of stars to vary as a function of the colour/metallicity, being rather regular and round for the blue (metal-poor) red giant branch and main-sequence turn-off stars but much more elliptical and irregularly shaped for the red (metal-rich) ones, with a distinct shell-like overdensity in the northeast side. We also detect kinematic anomalies, in the form of a ring-like feature with a considerably larger systemic line-of-sight velocity and lower metallicity than the rest of stars; even the photometrically selected component with a regular looking spatial distribution displays complex kinematics. With a stellar mass of just $sim5times10^{5} M_{odot}$, Sextans becomes the smallest galaxy presenting clear observational signs of accretion to date.
Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a syst ematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-disk bulge stars is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا