ﻻ يوجد ملخص باللغة العربية
Higher-order topological insulators are a recently discovered class of materials that can possess zero-dimensional localized states regardless of the dimension of the lattice. Here, we experimentally demonstrate that the topological corner-localized modes of higher-order topological insulators can be symmetry protected bound states in the continuum; these states do not hybridize with the surrounding bulk states of the lattice even in the absence of a bulk bandgap. As such, this class of structures has potential applications in confining and controlling light in systems that do not support a complete photonic bandgap.
We show that lattices with higher-order topology can support corner-localized bound states in the continuum (BICs). We propose a method for the direct identification of BICs in condensed matter settings and use it to demonstrate the existence of BICs
Twisted moire superlattices (TMSs) are fascinating materials with exotic physical properties. Despite tremendous studies on electronic, photonic and phononic TMSs, it has never been witnessed that TMSs can exhibit higher-order band topology. Here, we
Higher-order topological insulators (HOTIs) are recently discovered topological phases, possessing symmetry-protected corner states with fractional charges. An unexpected connection between these states and the seemingly unrelated phenomenon of bound
Topological insulators embody a new state of matter characterized entirely by the topological invariants of the bulk electronic structure rather than any form of spontaneously broken symmetry. Unlike the 2D quantum Hall or quantum spin-Hall-like syst
We propose a general theoretical framework for both constructing and diagnosing symmetry-protected higher-order topological superconductors using Kitaev building blocks, a higher-dimensional generalization of Kitaevs one-dimensional Majorana model. F