ﻻ يوجد ملخص باللغة العربية
We prove a emph{query complexity} lower bound for approximating the top $r$ dimensional eigenspace of a matrix. We consider an oracle model where, given a symmetric matrix $mathbf{M} in mathbb{R}^{d times d}$, an algorithm $mathsf{Alg}$ is allowed to make $mathsf{T}$ exact queries of the form $mathsf{w}^{(i)} = mathbf{M} mathsf{v}^{(i)}$ for $i$ in ${1,...,mathsf{T}}$, where $mathsf{v}^{(i)}$ is drawn from a distribution which depends arbitrarily on the past queries and measurements ${mathsf{v}^{(j)},mathsf{w}^{(i)}}_{1 le j le i-1}$. We show that for every $mathtt{gap} in (0,1/2]$, there exists a distribution over matrices $mathbf{M}$ for which 1) $mathrm{gap}_r(mathbf{M}) = Omega(mathtt{gap})$ (where $mathrm{gap}_r(mathbf{M})$ is the normalized gap between the $r$ and $r+1$-st largest-magnitude eigenvector of $mathbf{M}$), and 2) any algorithm $mathsf{Alg}$ which takes fewer than $mathrm{const} times frac{r log d}{sqrt{mathtt{gap}}}$ queries fails (with overwhelming probability) to identity a matrix $widehat{mathsf{V}} in mathbb{R}^{d times r}$ with orthonormal columns for which $langle widehat{mathsf{V}}, mathbf{M} widehat{mathsf{V}}rangle ge (1 - mathrm{const} times mathtt{gap})sum_{i=1}^r lambda_i(mathbf{M})$. Our bound requires only that $d$ is a small polynomial in $1/mathtt{gap}$ and $r$, and matches the upper bounds of Musco and Musco 15. Moreover, it establishes a strict separation between convex optimization and emph{randomized}, strict-saddle non-convex optimization of which PCA is a canonical example: in the former, first-order methods can have dimension-free iteration complexity, whereas in PCA, the iteration complexity of gradient-based methods must necessarily grow with the dimension.
Shors and Grovers famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and spec
We consider an online binary prediction setting where a forecaster observes a sequence of $T$ bits one by one. Before each bit is revealed, the forecaster predicts the probability that the bit is $1$. The forecaster is called well-calibrated if for e
In the Best-$k$-Arm problem, we are given $n$ stochastic bandit arms, each associated with an unknown reward distribution. We are required to identify the $k$ arms with the largest means by taking as few samples as possible. In this paper, we make pr
Suppose, we are given a set of $n$ elements to be clustered into $k$ (unknown) clusters, and an oracle/expert labeler that can interactively answer pair-wise queries of the form, do two elements $u$ and $v$ belong to the same cluster?. The goal is to
Nearly a decade ago, Azrieli and Shmaya introduced the class of $lambda$-Lipschitz games in which every players payoff function is $lambda$-Lipschitz with respect to the actions of the other players. They showed that such games admit $epsilon$-approx