ترغب بنشر مسار تعليمي؟ اضغط هنا

Lower Bounds for the Query Complexity of Equilibria in Lipschitz Games

328   0   0.0 ( 0 )
 نشر من قبل Matthew Katzman
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Nearly a decade ago, Azrieli and Shmaya introduced the class of $lambda$-Lipschitz games in which every players payoff function is $lambda$-Lipschitz with respect to the actions of the other players. They showed that such games admit $epsilon$-approximate pure Nash equilibria for certain settings of $epsilon$ and $lambda$. They left open, however, the question of how hard it is to find such an equilibrium. In this work, we develop a query-efficient reduction from more general games to Lipschitz games. We use this reduction to show a query lower bound for any randomized algorithm finding $epsilon$-approximate pure Nash equilibria of $n$-player, binary-action, $lambda$-Lipschitz games that is exponential in $frac{nlambda}{epsilon}$. In addition, we introduce ``Multi-Lipschitz games, a generalization involving player-specific Lipschitz values, and provide a reduction from finding equilibria of these games to finding equilibria of Lipschitz games, showing that the value of interest is the sum of the individual Lipschitz parameters. Finally, we provide an exponential lower bound on the deterministic query complexity of finding $epsilon$-approximate correlated equilibria of $n$-player, $m$-action, $lambda$-Lipschitz games for strong values of $epsilon$, motivating the consideration of explicitly randomized algorithms in the above results. Our proof is arguably simpler than those previously used to show similar results.



قيم البحث

اقرأ أيضاً

68 - Peter Hoyer 2005
Shors and Grovers famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and spec ifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.
We investigate the problem of equilibrium computation for large $n$-player games. Large games have a Lipschitz-type property that no single players utility is greatly affected by any other individual players actions. In this paper, we mostly focus on the case where any change of strategy by a player causes other players payoffs to change by at most $frac{1}{n}$. We study algorithms having query access to the games payoff function, aiming to find $epsilon$-Nash equilibria. We seek algorithms that obtain $epsilon$ as small as possible, in time polynomial in $n$. Our main result is a randomised algorithm that achieves $epsilon$ approaching $frac{1}{8}$ for 2-strategy games in a {em completely uncoupled} setting, where each player observes her own payoff to a query, and adjusts her behaviour independently of other players payoffs/actions. $O(log n)$ rounds/queries are required. We also show how to obtain a slight improvement over $frac{1}{8}$, by introducing a small amount of communication between the players. Finally, we give extension of our results to large games with more than two strategies per player, and alternative largeness parameters.
Graphical games are a useful framework for modeling the interactions of (selfish) agents who are connected via an underlying topology and whose behaviors influence each other. They have wide applications ranging from computer science to economics and biology. Yet, even though a players payoff only depends on the actions of their direct neighbors in graphical games, computing the Nash equilibria and making statements about the convergence time of natural local dynamics in particular can be highly challenging. In this work, we present a novel approach for classifying complexity of Nash equilibria in graphical games by establishing a connection to local graph algorithms, a subfield of distributed computing. In particular, we make the observation that the equilibria of graphical games are equivalent to locally verifiable labelings (LVL) in graphs; vertex labelings which are verifiable with a constant-round local algorithm. This connection allows us to derive novel lower bounds on the convergence time to equilibrium of best-response dynamics in graphical games. Since we establish that distributed convergence can sometimes be provably slow, we also introduce and give bounds on an intuitive notion of time-constrained inefficiency of best responses. We exemplify how our results can be used in the implementation of mechanisms that ensure convergence of best responses to a Nash equilibrium. Our results thus also give insight into the convergence of strategy-proof algorithms for graphical games, which is still not well understood.
We investigate the complexity of bounding the uncertainty of graphical games, and we provide new insight into the intrinsic difficulty of computing Nash equilibria. In particular, we show that, if one adds very simple and natural additional requireme nts to a graphical game, the existence of Nash equilibria is no longer guaranteed, and computing an equilibrium is an intractable problem. Moreover, if stronger equilibrium conditions are required for the game, we get hardness results for the second level of the polynomial hierarchy. Our results offer a clear picture of the complexity of mixed Nash equilibria in graphical games, and answer some open research questions posed by Conitzer and Sandholm (2003).
231 - Mona Rahn , Guido Schafer 2015
We consider polymatrix coordination games with individual preferences where every player corresponds to a node in a graph who plays with each neighbor a separate bimatrix game with non-negative symmetric payoffs. In this paper, we study $alpha$-appro ximate $k$-equilibria of these games, i.e., outcomes where no group of at most $k$ players can deviate such that each member increases his payoff by at least a factor $alpha$. We prove that for $alpha ge 2$ these games have the finite coalitional improvement property (and thus $alpha$-approximate $k$-equilibria exist), while for $alpha < 2$ this property does not hold. Further, we derive an almost tight bound of $2alpha(n-1)/(k-1)$ on the price of anarchy, where $n$ is the number of players; in particular, it scales from unbounded for pure Nash equilibria ($k = 1)$ to $2alpha$ for strong equilibria ($k = n$). We also settle the complexity of several problems related to the verification and existence of these equilibria. Finally, we investigate natural means to reduce the inefficiency of Nash equilibria. Most promisingly, we show that by fixing the strategies of $k$ players the price of anarchy can be reduced to $n/k$ (and this bound is tight).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا