ﻻ يوجد ملخص باللغة العربية
We used a data set from AKARI and Herschel images at wavelengths from 7 $mu$m to 500 $mu$m to catch the evidence of dust processing in galactic winds in NGC 1569. Images show a diffuse infrared (IR) emission extending from the galactic disk into the halo region. The most prominent filamentary structure seen in the diffuse IR emission is spatially in good agreement with the western H$alpha$ filament (western arm). The spatial distribution of the $F_mathrm{350}/F_mathrm{500}$ map shows high values in regions around the super-star clusters (SSCs) and towards the western arm, which are not found in the $F_mathrm{250}/F_mathrm{350}$ map. The color-color diagram of $F_mathrm{250}/F_mathrm{350}$-$F_mathrm{350}/F_mathrm{500}$ indicates high values of the emissivity power-law index ($beta_mathrm{c}$) of the cold dust component in those regions. From a spectral decomposition analysis on a pixel-by-pixel basis, a $beta_mathrm{c}$ map shows values ranging from $sim1$ to $sim2$ over the whole galaxy. In particular, high $beta_mathrm{c}$ values of $sim2$ are only observed in the regions indicated by the color-color diagram. Since the average cold dust temperature in NGC 1569 is $sim30$ K, $beta_mathrm{c}<2.0$ in the far-IR and sub-mm region theoretically suggests emission from amorphous grains, while $beta_mathrm{c}=2.0$ suggests that from crystal grains. Given that the enhanced $beta_mathrm{c}$ regions are spatially confined by the HI ridge that is considered to be a birthplace of the SSCs, the spatial coincidences may indicate that dust grains around the SSCs are grains of relatively high crystallinity injected by massive stars originating from starburst activities and that those grains are blown away along the HI ridge and thus the western arm.
We present new measurements of the dust emissivity index, beta, for the high-mass, star-forming OMC 2/3 filament. We combine 160-500 um data from Herschel with long-wavelength observations at 2 mm and fit the spectral energy distributions across a ~
We present ALMA CO(1-0) and CO(3-2) observations of the brightest cluster galaxy (BCG) in the 2A 0335+096 galaxy cluster (z = 0.0346). The total molecular gas mass of (1.13+/-0.15) x 10^9 M_sun is divided into two components: a nuclear region and a 7
We study the resolved radio-continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high quality NRAO Karl G. Jansky
Recent observations from the MUSTANG2 instrument on the Green Bank Telescope have revealed evidence of enhanced long-wavelength emission in the dust spectral energy distribution (SED) in the Orion Molecular Cloud (OMC) 2/3 filament on 25 ($sim$0.1 pc
Variations in the dust emissivity are critical for gas mass determinations derived from far-infrared observations, but also for separating dust foreground emission from the Cosmic Microwave Background (CMB). Hi-GAL observations allow us for the first