ترغب بنشر مسار تعليمي؟ اضغط هنا

A Spatially Resolved Radio Spectral Index Study of the Dwarf Irregular Galaxy NGC,1569

80   0   0.0 ( 0 )
 نشر من قبل Jonathan Westcott
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the resolved radio-continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high quality NRAO Karl G. Jansky Very Large Array (VLA) observations that densely sample the 1--34,GHz frequency range, we adopt a Bayesian fitting procedure, where we use H$alpha$ emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission and non-thermal spectral index vary across NGC,1569s main disk. We find a higher thermal fraction at 1,GHz than is found in spiral galaxies ($26^{+2}_{-3}%$) and find an average non-thermal spectral index $alpha = -0.53pm0.02$, suggesting that a young population of cosmic ray electrons is responsible for the observed non--thermal emission. By comparing our recovered map of the thermal radio emission with literature H$alpha$ maps, we estimate the total reddening along the line of sight to NGC,1569 to be $E(B-V) = 0.49 pm 0.05$, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC,1569.

قيم البحث

اقرأ أيضاً

We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camer a 3. Thanks to its proximity ($D=3.82pm 0.27$ Mpc) we reach stars 3 magnitudes fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history spans the whole Hubble time, but due to the age-metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e. $sim 3$ Gyr. The most recent peak of star formation is around 10 Myr ago. The average surface density star formation rate over the whole galaxy lifetime is $0.01$ M$_{odot}$ yr$^{-1}$ kpc$^{-2}$. From our study it emerges that NGC 4449 has experienced a fairly continuous star formation regime in the last 1 Gyr with peaks and dips whose star formation rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its star formation history does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy.
110 - D. Calzetti 2017
We investigate the relation between gas and star formation in sub-galactic regions, ~360 pc to ~1.5 kpc in size, within the nearby starburst dwarf NGC4449, in order to separate the underlying relation from the effects of sampling at varying spatial s cales. Dust and gas mass surface densities are derived by combining new observations at 1.1 mm, obtained with the AzTEC instrument on the Large Millimeter Telescope, with archival infrared images in the range 8-500 micron from the Spitzer Space Telescope and the Herschel Space Observatory. We extend the dynamic range of our mm (and dust) maps at the faint end, using a correlation between the far-infrared/millimeter colors F(70)/F(1100) [and F(160)/F(1100)] and the mid-infrared color F(8)/F(24) that we establish for the first time for this and other galaxies. Supplementing our data with maps of the extinction-corrected star formation rate (SFR) surface density, we measure both the SFR-molecular gas and the SFR-total gas relations in NGC4449. We find that the SFR-molecular gas relation is described by a power law with exponent that decreases from ~1.5 to ~1.2 for increasing region size, while the exponent of the SFR-total gas relation remains constant with value ~1.5 independent of region size. We attribute the molecular law behavior to the increasingly better sampling of the molecular cloud mass function at larger region sizes; conversely, the total gas law behavior likely results from the balance between the atomic and molecular gas phases achieved in regions of active star formation. Our results indicate a non-linear relation between SFR and gas surface density in NGC4449, similar to what is observed for galaxy samples.
Context. Outflows powered by the injection of kinetic energy from massive stars can strongly affect the chemical evolution of galaxies, in particular of dwarf galaxies, as their lower gravitational potentials enhance the chance of a galactic wind. Aims. We therefore performed a detailed kinematic analysis of the neutral and ionised gas components in the nearby star-forming irregular dwarf galaxy NGC 4861. Similar to a recently published study of NGC 2366, we want to make predictions about the fate of the gas and to discuss some general issues about this galaxy. Methods. Fabry-Perot interferometric data centred on the Halpha line were obtained with the 1.93m telescope at the Observatoire de Haute-Provence. They were complemented by HI synthesis data from the VLA. We performed a Gaussian decomposition of both the Halpha and the HI emission lines in order to search for multiple components indicating outflowing gas. The expansion velocities of the detected outflows were compared to the escape velocity of NGC 4861, which was modelled with a pseudo-isothermal halo. Results. Both in Halpha and HI the galaxy shows several outflows, three directly connected to the disc and probably forming the edges of a supergiant shell, and one at kpc-distance from the disc. We measured velocity offsets of 20 to 30 km/s, which are low in comparison to the escape velocity of the galaxy and therefore minimise the chance of a galactic wind.
A transient in the Local Group dwarf irregular galaxy NGC 6822 (Barnards Galaxy) was discovered on 2017 August 2 and is only the second classical nova discovered in that galaxy. We conducted optical, near-ultraviolet, and X-ray follow-up observations of the eruption, the results of which we present here. This very fast nova had a peak $V$-band magnitude in the range $-7.41>M_V>-8.33$ mag, with decline times of $t_{2,V} = 8.1 pm 0.2$ d and $t_{3,V} = 15.2 pm 0.3$ d. The early- and late-time spectra are consistent with an Fe II spectral class. The H$alpha$ emission line initially has a full width at half-maximum intensity of $sim 2400$ km s$^{-1}$ - a moderately fast ejecta velocity for the class. The H$alpha$ line then narrows monotonically to $sim1800$ km s$^{-1}$ by 70 d post-eruption. The lack of a pre-eruption coincident source in archival Hubble Space Telescope imaging implies that the donor is a main sequence, or possibly subgiant, star. The relatively low peak luminosity and rapid decline hint that AT 2017fvz may be a faint and fast nova.
GRB 020903 is a long-duration gamma ray burst (LGRB) with a host galaxy close enough and extended enough for spatially-resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy ho st complex that appears to consist of four interacting components. Here we present the results of spatially-resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles we were able to obtain optical spectra (3600-9000{AA}) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable sub-solar metallicities. We conclude that, in agreement with past spatially-resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا