ﻻ يوجد ملخص باللغة العربية
Recent observations from the MUSTANG2 instrument on the Green Bank Telescope have revealed evidence of enhanced long-wavelength emission in the dust spectral energy distribution (SED) in the Orion Molecular Cloud (OMC) 2/3 filament on 25 ($sim$0.1 pc) scales. Here we present a measurement of the dust SED on larger spatial scales (map size 0.5-3 degrees or roughly 3-20pc), at somewhat lower resolution (120, corresponding to 0.25 pc at the distance of 400pc) using data from the Herschel satellite and Atacama Cosmology Telescope (ACT). We then extend these 120-scale investigations to other regions covered in the Herschel Gould Belt Survey (HGBS) specifically: the dense filaments in the southerly regions of Orion A and its tail; Orion B; and Serpens-S. Our dataset in aggregate covers approximately 10 deg$^2$, with continuum photometry spanning from 160 um to 3mm. These data also show an excess of emission at 3mm, though somewhat weaker (8.5% excess) compared to what is seen at higher resolution. More strikingly, we find that the enhancement is present even more strongly in the other filaments we targeted, with an average enhancement of 24.9% compared to a standard MBB fit to lambda $leq$2mm data. By applying this analysis to the other targeted regions we lay the groundwork for future high-resolution observations and analysis. Finally, we also consider a two-component dust model motivated by Planck results and an amorphous grain dust model. While both of these have been proposed to explain deviations in emission from a generic modified blackbody, we find that they do not perform significantly better than a MBB spectrum for fitting the SEDs.
We present new measurements of the dust emissivity index, beta, for the high-mass, star-forming OMC 2/3 filament. We combine 160-500 um data from Herschel with long-wavelength observations at 2 mm and fit the spectral energy distributions across a ~
Aims. The process of gravitational fragmentation in the L1482 molecular filament of the California molecular cloud is studied by combining several complementary observations and physical estimates. We investigate the kinematic and dynamical states of
The $rho$ Oph molecular cloud is one of the best examples of spinning dust emission, first detected by the Cosmic Background Imager (CBI). Here we present 4.5 arcmin observations with CBI 2 that confirm 31 GHz emission from $rho$ Oph W, the PDR expos
Using N-body/gasdynamic simulations of a Milky Way-like galaxy we analyse a Kennicutt-Schmidt relation, $Sigma_{SFR} propto Sigma_{gas}^N$, at different spatial scales. We simulate synthetic observations in CO lines and UV band. We adopt the star for
We report on a multi parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M33. A catalog of GMCs identifed in 12CO(J=3-2) was used to compile associated 12CO(J=1-0), dust, stellar mass and star formation rate. Each of the 5