ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalization Challenges for Neural Architectures in Audio Source Separation

110   0   0.0 ( 0 )
 نشر من قبل Shariq Mobin
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has shown that recurrent neural networks can be trained to separate individual speakers in a sound mixture with high fidelity. Here we explore convolutional neural network models as an alternative and show that they achieve state-of-the-art results with an order of magnitude fewer parameters. We also characterize and compare the robustness and ability of these different approaches to generalize under three different test conditions: longer time sequences, the addition of intermittent noise, and different datasets not seen during training. For the last condition, we create a new dataset, RealTalkLibri, to test source separation in real-world environments. We show that the acoustics of the environment have significant impact on the structure of the waveform and the overall performance of neural network models, with the convolutional model showing superior ability to generalize to new environments. The code for our study is available at https://github.com/ShariqM/source_separation.

قيم البحث

اقرأ أيضاً

Convolutive Non-Negative Matrix Factorization model factorizes a given audio spectrogram using frequency templates with a temporal dimension. In this paper, we present a convolutional auto-encoder model that acts as a neural network alternative to co nvolutive NMF. Using the modeling flexibility granted by neural networks, we also explore the idea of using a Recurrent Neural Network in the encoder. Experimental results on speech mixtures from TIMIT dataset indicate that the convolutive architecture provides a significant improvement in separation performance in terms of BSSeval metrics.
In this paper, we propose a source separation method that is trained by observing the mixtures and the class labels of the sources present in the mixture without any access to isolated sources. Since our method does not require source class labels fo r every time-frequency bin but only a single label for each source constituting the mixture signal, we call this scenario as weak class supervision. We associate a variational autoencoder (VAE) with each source class within a non-negative (compositional) model. Each VAE provides a prior model to identify the signal from its associated class in a sound mixture. After training the model on mixtures, we obtain a generative model for each source class and demonstrate our method on one-second mixtures of utterances of digits from 0 to 9. We show that the separation performance obtained by source class supervision is as good as the performance obtained by source signal supervision.
In recent years, music source separation has been one of the most intensively studied research areas in music information retrieval. Improvements in deep learning lead to a big progress in music source separation performance. However, most of the pre vious studies are restricted to separating a few limited number of sources, such as vocals, drums, bass, and other. In this study, we propose a network for audio query-based music source separation that can explicitly encode the source information from a query signal regardless of the number and/or kind of target signals. The proposed method consists of a Query-net and a Separator: given a query and a mixture, the Query-net encodes the query into the latent space, and the Separator estimates masks conditioned by the latent vector, which is then applied to the mixture for separation. The Separator can also generate masks using the latent vector from the training samples, allowing separation in the absence of a query. We evaluate our method on the MUSDB18 dataset, and experimental results show that the proposed method can separate multiple sources with a single network. In addition, through further investigation of the latent space we demonstrate that our method can generate continuous outputs via latent vector interpolation.
A major goal in blind source separation to identify and separate sources is to model their inherent characteristics. While most state-of-the-art approaches are supervised methods trained on large datasets, interest in non-data-driven approaches such as Kernel Additive Modelling (KAM) remains high due to their interpretability and adaptability. KAM performs the separation of a given source applying robust statistics on the time-frequency bins selected by a source-specific kernel function, commonly the K-NN function. This choice assumes that the source of interest repeats in both time and frequency. In practice, this assumption does not always hold. Therefore, we introduce a shift-invariant kernel function capable of identifying similar spectral content even under frequency shifts. This way, we can considerably increase the amount of suitable sound material available to the robust statistics. While this leads to an increase in separation performance, a basic formulation, however, is computationally expensive. Therefore, we additionally present acceleration techniques that lower the overall computational complexity.
Models for audio source separation usually operate on the magnitude spectrum, which ignores phase information and makes separation performance dependant on hyper-parameters for the spectral front-end. Therefore, we investigate end-to-end source separ ation in the time-domain, which allows modelling phase information and avoids fixed spectral transformations. Due to high sampling rates for audio, employing a long temporal input context on the sample level is difficult, but required for high quality separation results because of long-range temporal correlations. In this context, we propose the Wave-U-Net, an adaptation of the U-Net to the one-dimensional time domain, which repeatedly resamples feature maps to compute and combine features at different time scales. We introduce further architectural improvements, including an output layer that enforces source additivity, an upsampling technique and a context-aware prediction framework to reduce output artifacts. Experiments for singing voice separation indicate that our architecture yields a performance comparable to a state-of-the-art spectrogram-based U-Net architecture, given the same data. Finally, we reveal a problem with outliers in the currently used SDR evaluation metrics and suggest reporting rank-based statistics to alleviate this problem.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا