ترغب بنشر مسار تعليمي؟ اضغط هنا

Shift-Invariant Kernel Additive Modelling for Audio Source Separation

342   0   0.0 ( 0 )
 نشر من قبل Delia Fano Yela
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

A major goal in blind source separation to identify and separate sources is to model their inherent characteristics. While most state-of-the-art approaches are supervised methods trained on large datasets, interest in non-data-driven approaches such as Kernel Additive Modelling (KAM) remains high due to their interpretability and adaptability. KAM performs the separation of a given source applying robust statistics on the time-frequency bins selected by a source-specific kernel function, commonly the K-NN function. This choice assumes that the source of interest repeats in both time and frequency. In practice, this assumption does not always hold. Therefore, we introduce a shift-invariant kernel function capable of identifying similar spectral content even under frequency shifts. This way, we can considerably increase the amount of suitable sound material available to the robust statistics. While this leads to an increase in separation performance, a basic formulation, however, is computationally expensive. Therefore, we additionally present acceleration techniques that lower the overall computational complexity.



قيم البحث

اقرأ أيضاً

Kernel Additive Modelling (KAM) is a framework for source separation aiming to explicitly model inherent properties of sound sources to help with their identification and separation. KAM separates a given source by applying robust statistics on the s election of time-frequency bins obtained through a source-specific kernel, typically the k-NN function. Even though the parameter k appears to be key for a successful separation, little discussion on its influence or optimisation can be found in the literature. Here we propose a novel method, based on graph theory statistics, to automatically optimise $k$ in a vocal separation task. We introduce the k-NN hubness as an indicator to find a tailored k at a low computational cost. Subsequently, we evaluate our method in comparison to the common approach to choose k. We further discuss the influence and importance of this parameter with illuminating results.
In recent years, music source separation has been one of the most intensively studied research areas in music information retrieval. Improvements in deep learning lead to a big progress in music source separation performance. However, most of the pre vious studies are restricted to separating a few limited number of sources, such as vocals, drums, bass, and other. In this study, we propose a network for audio query-based music source separation that can explicitly encode the source information from a query signal regardless of the number and/or kind of target signals. The proposed method consists of a Query-net and a Separator: given a query and a mixture, the Query-net encodes the query into the latent space, and the Separator estimates masks conditioned by the latent vector, which is then applied to the mixture for separation. The Separator can also generate masks using the latent vector from the training samples, allowing separation in the absence of a query. We evaluate our method on the MUSDB18 dataset, and experimental results show that the proposed method can separate multiple sources with a single network. In addition, through further investigation of the latent space we demonstrate that our method can generate continuous outputs via latent vector interpolation.
Convolutive Non-Negative Matrix Factorization model factorizes a given audio spectrogram using frequency templates with a temporal dimension. In this paper, we present a convolutional auto-encoder model that acts as a neural network alternative to co nvolutive NMF. Using the modeling flexibility granted by neural networks, we also explore the idea of using a Recurrent Neural Network in the encoder. Experimental results on speech mixtures from TIMIT dataset indicate that the convolutive architecture provides a significant improvement in separation performance in terms of BSSeval metrics.
We address the determined audio source separation problem in the time-frequency domain. In independent deeply learned matrix analysis (IDLMA), it is assumed that the inter-frequency correlation of each source spectrum is zero, which is inappropriate for modeling nonstationary signals such as music signals. To account for the correlation between frequencies, independent positive semidefinite tensor analysis has been proposed. This unsupervised (blind) method, however, severely restrict the structure of frequency covariance matrices (FCMs) to reduce the number of model parameters. As an extension of these conventional approaches, we here propose a supervised method that models FCMs using deep neural networks (DNNs). It is difficult to directly infer FCMs using DNNs. Therefore, we also propose a new FCM model represented as a convex combination of a diagonal FCM and a rank-1 FCM. Our FCM model is flexible enough to not only consider inter-frequency correlation, but also capture the dynamics of time-varying FCMs of nonstationary signals. We infer the proposed FCMs using two DNNs: DNN for power spectrum estimation and DNN for time-domain signal estimation. An experimental result of separating music signals shows that the proposed method provides higher separation performance than IDLMA.
Independent deeply learned matrix analysis (IDLMA) is one of the state-of-the-art supervised multichannel audio source separation methods. It blindly estimates the demixing filters on the basis of source independence, using the source model estimated by the deep neural network (DNN). However, since the ratios of the source to interferer signals vary widely among time-frequency (TF) slots, it is difficult to obtain reliable estimated power spectrograms of sources at all TF slots. In this paper, we propose an IDLMA extension, empirical Bayesian IDLMA (EB-IDLMA), by introducing a prior distribution of source power spectrograms and treating the source power spectrograms as latent random variables. This treatment allows us to implicitly consider the reliability of the estimated source power spectrograms for the estimation of demixing filters through the hyperparameters of the prior distribution estimated by the DNN. Experimental evaluations show the effectiveness of EB-IDLMA and the importance of introducing the reliability of the estimated source power spectrograms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا