ﻻ يوجد ملخص باللغة العربية
The dynamics of a weakly interacting Bose gas at low temperatures is close to integrable due to the approximate quadratic nature of the many-body Hamiltonian. While the short-time physics after an abrupt ramp of the interaction constant is dominated by the integrable dynamics, integrability is broken at longer times by higher-order interaction terms in the Bogoliubov Hamiltonian, in particular by Beliaev-Landau scatterings involving three quasiparticles. The two-stage relaxation process is highlighted in the evolution of local observables such as the density-density correlation function: a dephasing mechanism leads the system to a prethermal stage, followed by true thermalization conveyed by quasiparticle collisions. Our results bring the crossover from prethermalization to thermalization within reach of current experiments with ultracold atomic gases.
We compute the Tans contact of a weakly interacting Bose gas at zero temperature in a cigar-shaped configuration. Using an effective one-dimensional Gross-Pitaeskii equation and Bogoliubov theory, we derive an analytical formula that interpolates bet
Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating
We study the relaxation dynamics of interacting, one-dimensional fermions with band curvature after a weak quench in the interaction parameter. After the quench, the system is described by a non-equilibrium initial state, which relaxes towards therma
In a joint experimental and theoretical effort, we report on the formation of a macro-droplet state in an ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s-wave scattering length below the so-called di
We theoretically examine three-well interferometry in Bose-Einstein condensates using adiabatic passage. Specifically, we demonstrate that a fractional coherent transport adiabatic passage protocol enables stable spatial splitting in the presence of