ترغب بنشر مسار تعليمي؟ اضغط هنا

Prethermalization to thermalization crossover in a dilute Bose gas following an interaction ramp

89   0   0.0 ( 0 )
 نشر من قبل Mathias Van Regemortel
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of a weakly interacting Bose gas at low temperatures is close to integrable due to the approximate quadratic nature of the many-body Hamiltonian. While the short-time physics after an abrupt ramp of the interaction constant is dominated by the integrable dynamics, integrability is broken at longer times by higher-order interaction terms in the Bogoliubov Hamiltonian, in particular by Beliaev-Landau scatterings involving three quasiparticles. The two-stage relaxation process is highlighted in the evolution of local observables such as the density-density correlation function: a dephasing mechanism leads the system to a prethermal stage, followed by true thermalization conveyed by quasiparticle collisions. Our results bring the crossover from prethermalization to thermalization within reach of current experiments with ultracold atomic gases.



قيم البحث

اقرأ أيضاً

We compute the Tans contact of a weakly interacting Bose gas at zero temperature in a cigar-shaped configuration. Using an effective one-dimensional Gross-Pitaeskii equation and Bogoliubov theory, we derive an analytical formula that interpolates bet ween the three-dimensional and the one-dimensional mean-field regimes. In the strictly one-dimensional limit, we compare our results with Lieb-Liniger theory. Our study can be a guide for actual experiments interested in the study of Tans contact in the dimensional crossover.
Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating can be exponentially suppressed when the drive frequency is large compared to the local energy scales of the system -- leading to long-lived prethermal regimes. In this work, we experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a prethermal regime in the Bose-Hubbard model. By measuring the energy absorption of the cloud as the driving frequency is increased, we observe an exponential-in-frequency reduction of the heating rate persisting over more than 2 orders of magnitude. The tunability of the lattice potentials allows us to explore one- and two-dimensional systems in a range of different interacting regimes. Alongside the exponential decrease, the dependence of the heating rate on the frequency displays features characteristic of the phase diagram of the Bose-Hubbard model, whose understanding is additionally supported by numerical simulations in one dimension. Our results show experimental evidence of the phenomenon of Floquet prethermalization, and provide insight into the characterization of heating for driven bosonic systems.
We study the relaxation dynamics of interacting, one-dimensional fermions with band curvature after a weak quench in the interaction parameter. After the quench, the system is described by a non-equilibrium initial state, which relaxes towards therma l equilibrium, featuring prethermal behavior on intermediate time and length scales. The model corresponds to the class of interacting Luttinger Liquids, which extends the quadratic Luttinger theory by a weak integrability breaking phonon scattering term. In order to solve for the non-equilibrium time evolution, we use kinetic equations for the phonon densities, exploiting the resonant but subleading character of the phonon interaction term. The interplay between phonon scattering and the quadratic Luttinger theory leads to the emergence of three distinct spatio-temporal regimes for the fermionic real-space correlation function. It features the crossover from a prequench to a prethermal state, finally evolving towards a thermal state on increasing length and time scales. The characteristic algebraically decaying real-space correlations in the prethermalized regime become modulated by an amplitude, which, as an effect of the interactions, is decaying in time according to a stretched-exponential, while in the thermal regime exponentially decaying real-space correlations emerge. The asymptotic thermalization dynamics is governed by energy transport over large distances from the thermalized to the non-thermalized regions, which is carried out by macroscopic, dynamical slow modes. This is revealed in an algebraic decay of the systems effective temperature. The numerical value of the associated exponent agrees with the dynamical critical exponent of the Kardar-Parisi-Zhang universality class, which shares with the present interacting Luttinger Liquid the conservation of total energy and momentum.
150 - L. Chomaz , S. Baier , D. Petter 2016
In a joint experimental and theoretical effort, we report on the formation of a macro-droplet state in an ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s-wave scattering length below the so-called di polar length, we observe a smooth crossover of the ground state from a dilute Bose-Einstein condensate (BEC) to a dense macro-droplet state of more than $10^4$ atoms. Based on the study of collective excitations and loss features, we quantitative prove that quantum fluctuations stabilize the ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform expansion measurements, showing the evolution of the normal BEC towards a three-dimensional self-bound state and show that the interplay between quantum stabilization and three-body losses gives rise to a minimal expansion velocity at a finite scattering length.
We theoretically examine three-well interferometry in Bose-Einstein condensates using adiabatic passage. Specifically, we demonstrate that a fractional coherent transport adiabatic passage protocol enables stable spatial splitting in the presence of nonlinear interactions. A reversal of this protocol produces a coherent recombination of the BEC with a phase-dependent population of the three wells. The effect of nonlinear interactions on the interferometric measurement is quantified and found to lead to an enhancement in sensitivity for moderate interaction strengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا