ﻻ يوجد ملخص باللغة العربية
We compute the Tans contact of a weakly interacting Bose gas at zero temperature in a cigar-shaped configuration. Using an effective one-dimensional Gross-Pitaeskii equation and Bogoliubov theory, we derive an analytical formula that interpolates between the three-dimensional and the one-dimensional mean-field regimes. In the strictly one-dimensional limit, we compare our results with Lieb-Liniger theory. Our study can be a guide for actual experiments interested in the study of Tans contact in the dimensional crossover.
Tans contact is a quantity that unifies many different properties of a low-temperature gas with short-range interactions, from its momentum distribution to its spatial two-body correlation function. Here, we use a Ramsey interferometric method to rea
We study Tans contact, i.e. the coefficient of the high-momentum tails of the momentum distribution at leading order, for an interacting one-dimensional Bose gas subjected to a harmonic confinement. Using a strong-coupling systematic expansion of the
We theoretically examine three-well interferometry in Bose-Einstein condensates using adiabatic passage. Specifically, we demonstrate that a fractional coherent transport adiabatic passage protocol enables stable spatial splitting in the presence of
The dynamics of a weakly interacting Bose gas at low temperatures is close to integrable due to the approximate quadratic nature of the many-body Hamiltonian. While the short-time physics after an abrupt ramp of the interaction constant is dominated
Using Boltzmanns equation, we study the effect of three-body losses on the momentum distribution of a homogeneous unitary Bose gas in the dilute limit where quantum correlations are negligible. We calculate the momentum distribution of the gas and sh