ﻻ يوجد ملخص باللغة العربية
In a joint experimental and theoretical effort, we report on the formation of a macro-droplet state in an ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s-wave scattering length below the so-called dipolar length, we observe a smooth crossover of the ground state from a dilute Bose-Einstein condensate (BEC) to a dense macro-droplet state of more than $10^4$ atoms. Based on the study of collective excitations and loss features, we quantitative prove that quantum fluctuations stabilize the ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform expansion measurements, showing the evolution of the normal BEC towards a three-dimensional self-bound state and show that the interplay between quantum stabilization and three-body losses gives rise to a minimal expansion velocity at a finite scattering length.
We investigate the early-time dynamics of a quasi-two-dimensional spin-1 antiferromagnetic Bose-Einstein condensate after a sudden quench from the easy-plane to the easy-axis polar phase. The post-quench dynamics shows a crossover behavior as the que
We study experimentally and numerically the quasi-bidimensional transport of a $^{87}$Rb Bose-Einstein condensate launched with a velocity $v_0$ inside a disordered optical potential created by a speckle pattern. A time-of-flight analysis reveals a p
We have measured the effect of dipole-dipole interactions on the frequency of a collective mode of a Bose-Einstein condensate. At relatively large numbers of atoms, the experimental measurements are in good agreement with zero temperature theoretical
We consider the quasi-particle excitations of a trapped dipolar Bose-Einstein condensate. By mapping these excitations onto radial and angular momentum we show that the roton modes are clearly revealed as discrete fingers in parameter space, whereas
We have measured the quantum depletion of an interacting homogeneous Bose-Einstein condensate, and confirmed the 70-year old theory of N.N. Bogoliubov. The observed condensate depletion is reversibly tuneable by changing the strength of the interpart