ترغب بنشر مسار تعليمي؟ اضغط هنا

A Case Study of On-the-Fly Wide-Field Radio Imaging Applied to the Gravitational-wave Event GW 151226

45   0   0.0 ( 0 )
 نشر من قبل Kunal Mooley
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. P. Mooley




اسأل ChatGPT حول البحث

We apply a newly-developed On-the-Fly mosaicing technique on the NSFs Karl G. Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive search for an afterglow from the Advanced LIGO binary black hole merger event GW 151226. In three epochs between 1.5 and 6 months post-merger we observed a 100 sq. deg region, with more than 80% of the survey region having a RMS sensitivity of better than 150 uJy/beam, in the northern hemisphere having a merger containment probability of 10%. The data were processed in near-real-time, and analyzed to search for transients and variables. No transients were found but we have demonstrated the ability to conduct blind searches in a time-frequency phase space where the predicted afterglow signals are strongest. If the gravitational wave event is contained within our survey region, the upper limit on any late-time radio afterglow from the merger event at an assumed mean distance of 440 Mpc is about 1e29 erg/s/Hz. Approximately 1.5% of the radio sources in the field showed variability at a level of 30%, and can be attributed to normal activity from active galactic nuclei. The low rate of false positives in the radio sky suggests that wide-field imaging searches at a few Gigahertz can be an efficient and competitive search strategy. We discuss our search method in the context of the recent afterglow detection from GW 170817 and radio follow-up in future gravitational wave observing runs.

قيم البحث

اقرأ أيضاً

130 - E. Troja , L. Piro , H. van Eerten 2017
A long-standing paradigm in astrophysics is that collisions- or mergers- of two neutron stars (NSs) form highly relativistic and collimated outflows (jets) powering gamma-ray bursts (GRBs) of short (< 2 s) duration. However, the observational support for this model is only indirect. A hitherto outstanding prediction is that gravitational wave (GW) events from such mergers should be associated with GRBs, and that a majority of these GRBs should be off-axis, that is, they should point away from the Earth. Here we report the discovery of the X-ray counterpart associated with the GW event GW170817. While the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow from freshly synthesized r-process material in the merger ejecta, known as kilonova, observations at X-ray and, later, radio frequencies exhibit the behavior of a short GRB viewed off-axis. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short GRBs and GWs from NS mergers, and gives independent confirmation of the collimated nature of the GRB emission.
We present the results of the detailed analysis of an optical imaging survey conducted using the Subaru / Hyper Suprime-Cam (HSC), which aims to identify an optical counterpart to the gravitational wave event GW151226. In half a night, the $i$- and $ z$-band imaging survey by HSC covers 63.5deg$^2$ of the error region, which contains about 7% of the LIGO localization probability, and the same field is observed in three different epochs. The detectable magnitude of the candidates in a differenced image is evaluated as $i sim 23.2$ mag for the requirement of at least two 5$sigma$ detections, and 1744 candidates are discovered. Assuming a kilonova as an optical counterpart, we compared the optical properties of the candidates with model predictions. A red and rapidly declining light curve condition enables the discrimination of a kilonova from other transients, and a small number of candidates satisfy this condition. The presence of stellar-like counterparts in the reference frame suggests that the surviving candidates are likely to be flare stars. The fact that most of those candidates are in galactic plane, $|b|<5^{circ}$, supports this interpretation. We also checked whether the candidates are associated with the nearby GLADE galaxies, which reduces the number of contaminants even with a looser color cut. When a better probability map (with localization accuracy of $sim50{rm deg}^2$) is available, kilonova searches of up to approximately $200$ Mpc will become feasible by conducting immediate follow-up observations with an interval of 3--6 days.
118 - E. Troja , A. M. Read , A. Tiengo 2016
The detection of the first gravitational wave (GW) transient GW150914 prompted an extensive campaign of follow-up observations at all wavelengths. Although no dedicated XMM-Newton observations have been performed, the satellite passed through the GW1 50914 error box during normal operations. Here we report the analysis of the data taken during these satellite slews performed two hours and two weeks after the GW event. Our data cover 1.1 square degrees and 4.8 square degrees of the final GW localization region. No credible X-ray counterpart to GW150914 is found down to a sensitivity of 6E-13 erg/cm2/s in the 0.2-2 keV band. Nevertheless, these observations show the great potential of XMM-Newton slew observations for the search of the electromagnetic counterparts of GW events. A series of adjacent slews performed in response to a GW trigger would take <1.5 days to cover most of the typical GW credible region. We discuss this scenario and its prospects for detecting the X-ray counterpart of future GW detections.
Using data of the Baksan Underground Scintillation Telescope (BUST) we have made a search for muon neutrinos and antineutrinos with energies above 1 GeV coinciding with the gravitational wave event GW170817 that was recorded on August 17, 2017 by the Advanced LIGO and Advanced Virgo observatories. This is a first detection of the new type of events occurring as a result of a merger of two neutron stars in a binary system. A short gamma-ray burst GRB170817A accompanying this event is an evidence of particle acceleration in the source whose precise position was determined by detection of the subsequent optical signal. No neutrino signals were found with the BUST in the interval $pm 500$ s around the moment of the gravitational wave event GW170817, as well as during the next 14 days. The upper limits on integral fluxes of muon neutrino and antineutrino from the source are derived.
Context. As the importance of Gravitational Wave (GW) Astrophysics increases rapidly, astronomers in different fields and with different backgrounds can have the need to get a quick idea of which GW source populations can be detected by which detecto rs and with what measurement uncertainties. Aims. The GW-Toolbox is an easy-to-use, flexible tool to simulate observations on the GW universe with different detectors, including ground-based interferometers (advanced LIGO, advanced VIRGO, KAGRA, Einstein Telescope, and also customised designs), space-borne interferometers (LISA and a customised design), pulsar timing arrays mimicking the current working ones (EPTA, PPTA, NANOGrav, IPTA) and future ones. We include a broad range of sources such as mergers of stellar mass compact objects, namely black holes, neutron stars and black hole-neutron stars; and supermassive black hole binaries mergers and inspirals, Galactic double white dwarfs in ultra-compact orbit, extreme mass ratio inspirals and Stochastic GW backgrounds. Methods. We collect methods to simulate source populations and determine their detectability with the various detectors. The paper aims at giving a comprehensive description on the algorithm and functionality of the GW-Toolbox. Results. The GW-Toolbox produces results that are consistent with more detailed calculations of the different source classes and can be accessed with a website interface (gw-universe.org) or as a python package (https://bitbucket.org/radboudradiolab/gwtoolbox). In the future, it will be upgraded with more functionality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا