ترغب بنشر مسار تعليمي؟ اضغط هنا

A Challenge to Identify an Optical Counterpart of the Gravitational Wave Event GW151226 with Hyper Suprime-Cam

203   0   0.0 ( 0 )
 نشر من قبل Yousuke Utsumi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the detailed analysis of an optical imaging survey conducted using the Subaru / Hyper Suprime-Cam (HSC), which aims to identify an optical counterpart to the gravitational wave event GW151226. In half a night, the $i$- and $z$-band imaging survey by HSC covers 63.5deg$^2$ of the error region, which contains about 7% of the LIGO localization probability, and the same field is observed in three different epochs. The detectable magnitude of the candidates in a differenced image is evaluated as $i sim 23.2$ mag for the requirement of at least two 5$sigma$ detections, and 1744 candidates are discovered. Assuming a kilonova as an optical counterpart, we compared the optical properties of the candidates with model predictions. A red and rapidly declining light curve condition enables the discrimination of a kilonova from other transients, and a small number of candidates satisfy this condition. The presence of stellar-like counterparts in the reference frame suggests that the surviving candidates are likely to be flare stars. The fact that most of those candidates are in galactic plane, $|b|<5^{circ}$, supports this interpretation. We also checked whether the candidates are associated with the nearby GLADE galaxies, which reduces the number of contaminants even with a looser color cut. When a better probability map (with localization accuracy of $sim50{rm deg}^2$) is available, kilonova searches of up to approximately $200$ Mpc will become feasible by conducting immediate follow-up observations with an interval of 3--6 days.



قيم البحث

اقرأ أيضاً

We present a search for an electromagnetic counterpart of the gravitational wave source GW151226. Using the Pan-STARRS1 telescope we mapped out 290 square degrees in the optical i_ps filter starting 11.5hr after the LIGO information release and lasti ng for a further 28 days. The first observations started 49.5hr after the time of the GW151226 detection. We typically reached sensitivity limits of i_ps = 20.3-20.8 and covered 26.5% of the LIGO probability skymap. We supplemented this with ATLAS survey data, reaching 31% of the probability region to shallower depths of m~19. We found 49 extragalactic transients (that are not obviously AGN), including a faint transient in a galaxy at 7Mpc (a luminous blue variable outburst) plus a rapidly decaying M-dwarf flare. Spectral classification of 20 other transient events showed them all to be supernovae. We found an unusual transient, PS15dpn, with an explosion date temporally coincident with GW151226 which evolved into a type Ibn supernova. The redshift of the transient is secure at z=0.1747 +/- 0.0001 and we find it unlikely to be linked, since the luminosity distance has a negligible probability of being consistent with that of GW151226. In the 290 square degrees surveyed we therefore do not find a likely counterpart. However we show that our survey strategy would be sensitive to NS-NS mergers producing kilonovae at D < 100 Mpc which is promising for future LIGO/Virgo searches.
We report the results of a Dark Energy Camera (DECam) optical follow-up of the gravitational wave (GW) event GW151226, discovered by the Advanced LIGO detectors. Our observations cover 28.8 deg$^2$ of the localization region in the $i$ and $z$ bands (containing 3% of the BAYESTAR localization probability), starting 10 hours after the event was announced and spanning four epochs at $2-24$ days after the GW detection. We achieve $5sigma$ point-source limiting magnitudes of $iapprox21.7$ and $zapprox21.5$, with a scatter of $0.4$ mag, in our difference images. Given the two day delay, we search this area for a rapidly declining optical counterpart with $gtrsim 3sigma$ significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged AGN. The fourth source is offset by $5.8$ arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by $0.5$ mag over $4$ days, and has a red color of $i-zapprox 0.3$ mag. These properties roughly match the expectations for a kilonova. However, this source was detected several times, starting $94$ days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.
We perform a $z$-band survey for an optical counterpart of a binary neutron star coalescence GW170817 with Subaru/Hyper Suprime-Cam. Our untargeted transient search covers $23.6$ deg$^2$ corresponding to the $56.6%$ credible region of GW170817 and re aches the $50%$ completeness magnitude of $20.6$ mag on average. As a result, we find 60 candidates of extragalactic transients, including J-GEM17btc (a.k.a. SSS17a/DLT17ck). While J-GEM17btc is associated with NGC 4993 that is firmly located inside the 3D skymap of GW170817, the other 59 candidates do not have distance information in the GLADE v2 catalog or NASA/IPAC Extragalactic Database (NED). Among 59 candidates, 58 are located at the center of extended objects in the Pan-STARRS1 catalog, while one candidate has an offset. We present location, $z$-band apparent magnitude, and time variability of the candidates and evaluate the probabilities that they are located inside of the 3D skymap of GW170817. The probability for J-GEM17btc is $64%$ being much higher than those for the other 59 candidates ($9.3times10^{-3}-2.1times10^{-1}%$). Furthermore, the possibility, that at least one of the other 59 candidates is located within the 3D skymap, is only $3.2%$. Therefore, we conclude that J-GEM17btc is the most-likely and distinguished candidate as the optical counterpart of GW170817.
A gravitational wave event, S190510g, which was classified as a binary-neutron-star coalescence at the time of preliminary alert, was detected by LIGO/Virgo collaboration on May 10, 2019. At 1.7 hours after the issue of its preliminary alert, we star ted a target-of-opportunity imaging observation in Y-band to search for its optical counterpart using the Hyper Suprime-Cam (HSC) on the Subaru Telescope. The observation covers a 118.8 deg$^2$ sky area corresponding to 11.6% confidence in the localization skymap released in the preliminary alert and 1.2% in the updated skymap. We divided the observed area into two fields based on the availability of HSC reference images. For the fields with the HSC reference images, we applied an image subtraction technique; for the fields without the HSC reference images, we sought individual HSC images by matching a catalog of observed objects with the PS1 catalog. The search depth is 22.28 mag in the former method and the limit of search depth is 21.3 mag in the latter method. Subsequently, we performed visual inspection and obtained 83 candidates using the former method and 50 candidates using the latter method. Since we have only the 1-day photometric data, we evaluated probability to be located inside the 3D skymap by estimating their distances with photometry of associated extended objects. We found three candidates are likely located inside the 3D skymap and concluded they could be an counterpart of S190510g, while most of 133 candidates were likely to be supernovae because the number density of candidates was consistent with the expected number of supernova detections. By comparing our observational depth with a light curve model of such a kilonova reproducing AT2017gfo, we show that early-deep observations with the Subaru/HSC can capture the rising phase of blue component of kilonova at the estimated distance of S190510g (~230 Mpc).
We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 deg$^2$ area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in i and z bands at 4-5, 7, and 24 days after the trigger. The median $5sigma$ point-source limiting magnitudes of our search images are i=22.5 and z=21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg$^{2}$, corresponding to 12% total probability in the initial map and 3% of the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i= 21.5,21.1,20.1 for object colors (i-z)=1,0,-1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا