ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray counterpart to the gravitational wave event GW 170817

131   0   0.0 ( 0 )
 نشر من قبل Eleonora Troja
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A long-standing paradigm in astrophysics is that collisions- or mergers- of two neutron stars (NSs) form highly relativistic and collimated outflows (jets) powering gamma-ray bursts (GRBs) of short (< 2 s) duration. However, the observational support for this model is only indirect. A hitherto outstanding prediction is that gravitational wave (GW) events from such mergers should be associated with GRBs, and that a majority of these GRBs should be off-axis, that is, they should point away from the Earth. Here we report the discovery of the X-ray counterpart associated with the GW event GW170817. While the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow from freshly synthesized r-process material in the merger ejecta, known as kilonova, observations at X-ray and, later, radio frequencies exhibit the behavior of a short GRB viewed off-axis. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short GRBs and GWs from NS mergers, and gives independent confirmation of the collimated nature of the GRB emission.



قيم البحث

اقرأ أيضاً

We present a search for an electromagnetic counterpart of the gravitational wave source GW151226. Using the Pan-STARRS1 telescope we mapped out 290 square degrees in the optical i_ps filter starting 11.5hr after the LIGO information release and lasti ng for a further 28 days. The first observations started 49.5hr after the time of the GW151226 detection. We typically reached sensitivity limits of i_ps = 20.3-20.8 and covered 26.5% of the LIGO probability skymap. We supplemented this with ATLAS survey data, reaching 31% of the probability region to shallower depths of m~19. We found 49 extragalactic transients (that are not obviously AGN), including a faint transient in a galaxy at 7Mpc (a luminous blue variable outburst) plus a rapidly decaying M-dwarf flare. Spectral classification of 20 other transient events showed them all to be supernovae. We found an unusual transient, PS15dpn, with an explosion date temporally coincident with GW151226 which evolved into a type Ibn supernova. The redshift of the transient is secure at z=0.1747 +/- 0.0001 and we find it unlikely to be linked, since the luminosity distance has a negligible probability of being consistent with that of GW151226. In the 290 square degrees surveyed we therefore do not find a likely counterpart. However we show that our survey strategy would be sensitive to NS-NS mergers producing kilonovae at D < 100 Mpc which is promising for future LIGO/Virgo searches.
We report the first plausible optical electromagnetic (EM) counterpart to a (candidate) binary black hole (BBH) merger. Detected by the Zwicky Transient Facility (ZTF), the EM flare is consistent with expectations for a kicked BBH merger in the accre tion disk of an active galactic nucleus (AGN), and is unlikely ($<O(0.01%$)) due to intrinsic variability of this source. The lack of color evolution implies that it is not a supernovae and instead is strongly suggestive of a constant temperature shock. Other false-positive events, such as microlensing or a tidal disruption event, are ruled out or constrained to be $<O(0.1%$). If the flare is associated with S190521g, we find plausible values of: total mass $ M_{rm BBH} sim 100 M_{odot}$, kick velocity $v_k sim 200, {rm km}, {rm s}^{-1}$ at $theta sim 60^{circ}$ in a disk with aspect ratio $H/a sim 0.01$ (i.e., disk height $H$ at radius $a$) and gas density $rho sim 10^{-10}, {rm g}, {rm cm}^{-3}$. The merger could have occurred at a disk migration trap ($a sim 700, r_{g}$; $r_g equiv G M_{rm SMBH} / c^2$, where $M_{rm SMBH}$ is the mass of the AGN supermassive black hole). The combination of parameters implies a significant spin for at least one of the black holes in S190521g. The timing of our spectroscopy prevents useful constraints on broad-line asymmetry due to an off-center flare. We predict a repeat flare in this source due to a re-encountering with the disk in $sim 1.6, {rm yr}, (M_{rm SMBH}/10^{8}M_{odot}), (a/10^{3}r_{g})^{3/2}$.
We report the results of a Dark Energy Camera (DECam) optical follow-up of the gravitational wave (GW) event GW151226, discovered by the Advanced LIGO detectors. Our observations cover 28.8 deg$^2$ of the localization region in the $i$ and $z$ bands (containing 3% of the BAYESTAR localization probability), starting 10 hours after the event was announced and spanning four epochs at $2-24$ days after the GW detection. We achieve $5sigma$ point-source limiting magnitudes of $iapprox21.7$ and $zapprox21.5$, with a scatter of $0.4$ mag, in our difference images. Given the two day delay, we search this area for a rapidly declining optical counterpart with $gtrsim 3sigma$ significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged AGN. The fourth source is offset by $5.8$ arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by $0.5$ mag over $4$ days, and has a red color of $i-zapprox 0.3$ mag. These properties roughly match the expectations for a kilonova. However, this source was detected several times, starting $94$ days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.
We present a novel test of general relativity (GR): measuring the geometric component of the time delay due to gravitational lensing. GR predicts that photons and gravitational waves follow the same geodesic paths and thus experience the same geometr ic time delay. We show that for typical systems, the time delays are tens of seconds, and thus can dominate over astrophysical delays in the timing of photon emission. For the case of GW 170817, we use a multi-plane lensing code to evaluate the time delay due to four massive halos along the line of sight. From literature mass and distance measurements of these halos, we establish at high confidence (significantly greater than 5 sigma) that the gravitational waves of GW 170817 underwent gravitational deflection to arrive within 1.7 seconds of the photons.
We present the results of the detailed analysis of an optical imaging survey conducted using the Subaru / Hyper Suprime-Cam (HSC), which aims to identify an optical counterpart to the gravitational wave event GW151226. In half a night, the $i$- and $ z$-band imaging survey by HSC covers 63.5deg$^2$ of the error region, which contains about 7% of the LIGO localization probability, and the same field is observed in three different epochs. The detectable magnitude of the candidates in a differenced image is evaluated as $i sim 23.2$ mag for the requirement of at least two 5$sigma$ detections, and 1744 candidates are discovered. Assuming a kilonova as an optical counterpart, we compared the optical properties of the candidates with model predictions. A red and rapidly declining light curve condition enables the discrimination of a kilonova from other transients, and a small number of candidates satisfy this condition. The presence of stellar-like counterparts in the reference frame suggests that the surviving candidates are likely to be flare stars. The fact that most of those candidates are in galactic plane, $|b|<5^{circ}$, supports this interpretation. We also checked whether the candidates are associated with the nearby GLADE galaxies, which reduces the number of contaminants even with a looser color cut. When a better probability map (with localization accuracy of $sim50{rm deg}^2$) is available, kilonova searches of up to approximately $200$ Mpc will become feasible by conducting immediate follow-up observations with an interval of 3--6 days.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا