ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced spin-orbit torque via interface engineering in Pt/CoFeB/MgO heterostructures

75   0   0.0 ( 0 )
 نشر من قبل Byong-Guk Park
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-orbit torque facilitates efficient magnetization switching via an in-plane current in perpendicularly magnetized heavy metal/ferromagnet heterostructures. The efficiency of spin-orbit-torque-induced switching is determined by the charge-to-spin conversion arising from either bulk or interfacial spin-orbit interactions, or both. Here, we demonstrate that the spin-orbit torque and the resultant switching efficiency in Pt/CoFeB systems are significantly enhanced by an interfacial modification involving Ti insertion between the Pt and CoFeB layers. Spin pumping and X-ray magnetic circular dichroism experiments reveal that this enhancement is due to an additional interface-generated spin current of the nonmagnetic interface and/or improved spin transparency achieved by suppressing the proximity-induced moment in the Pt layer. Our results demonstrate that interface engineering affords an effective approach to improve spin-orbit torque and thereby magnetization switching efficiency.



قيم البحث

اقرأ أيضاً

Spin-orbit torque manifested as an accumulated spin-polarized moment at nonmagnetic normal metal, and ferromagnet interfaces is a promising magnetization switching mechanism for spintronic devices. To fully exploit this in practice, materials with a high spin Hall angle, i.e., a charge-to-spin conversion efficiency, are indispensable. To date, very few approaches have been made to devise new nonmagnetic metal alloys. Moreover, new materials need to be compatible with semiconductor processing. Here we introduce W-Ta and W-V alloys and deploy them at the interface between $beta$-W/CoFeB layers. First, spin Hall conductivities of W-Ta and W-V structures with various compositions are carried out by first-principles band calculations, which predict the spin Hall conductivity of the W-V alloy is improved from $-0.82 times 10^3$ S/cm that of W to $-1.98 times 10^3$ S/cm. Subsequently, heterostructure fabrication and spin-orbit torque properties are characterized experimentally. By alloying $beta$-W with V at a concentration of 20 at%, we observe a large enhancement of the absolute value of spin Hall conductivity of up to $-(2.77 pm 0.31) times 10^3$ S/cm. By employing X-ray diffraction and scanning transmission electron microscopy, we further explain the enhancement of spin-orbit torque efficiency is stemmed from W-V alloy between W and CoFeB.
Spin current generated by spin Hall effect in the heavy metal would diffuse up and down to adjacent ferromagnetic layers and exert torque on their magnetization, called spin-orbit torque. Antiferromagnetically coupled trilayers, namely the so-called synthetic antiferromagnets (SAF), are usually employed to serve as the pinned layer of spintronic devices based on spin valves and magnetic tunnel junctions to reduce the stray field and/or increase the pinning field. Here we investigate the spin-orbit torque in MgO/CoFeB/Ta/CoFeB/MgO perpendicularly magnetized multilayer with interlayer antiferromagnetic coupling. It is found that the magnetization of two CoFeB layers can be switched between two antiparallel states simultaneously. This observation is replicated by the theoretical calculations by solving Stoner-Wohlfarth model and Landau-Lifshitz-Gilbert equation. Our findings combine spin-orbit torque and interlayer coupling, which might advance the magnetic memories with low stray field and low power consumption.
181 - Jinsong Xu , C.L. Chien 2021
Voltage control of magnetism and spintronics have been highly desirable, but rarely realized. In this work, we show voltage-controlled spin-orbit torque (SOT) switching in W/CoFeB/MgO films with perpendicular magnetic anisotropy (PMA) with voltage ad ministered through SrTiO3 with a high dielectric constant. We show that a DC voltage can significantly lower PMA by 45%, reduce switching current by 23%, and increase the damping-like torque as revealed by the first and second-harmonic measurements. These are characteristics that are prerequisites for voltage-controlled and voltage-select SOT switching spintronic devices.
We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru lay ers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field ({Delta}H_L) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field ({Delta}H_T) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of {Delta}H_L observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while {Delta}H_T shows the same sign with a small magnitude. The opposite directions of {Delta}HL indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.
Spin transfer torques allow the electrical manipulation of the magnetization at room temperature, which is desirable in spintronic devices such as spin transfer torque memories. When combined with spin-orbit coupling, they give rise to spin-orbit tor ques which are a more powerful tool for magnetization control and can enrich device functionalities. The engineering of spin-orbit torques, based mostly on the spin Hall effect, is being intensely pursued. Here we report that the oxidation of spin-orbit torque devices triggers a new mechanism of spin-orbit torque, which is about two times stronger than that based on the spin Hall effect. We thus introduce a way to engineer spin-orbit torques via oxygen manipulation. Combined with electrical gating of the oxygen level, our findings may also pave the way towards reconfigurable logic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا