ﻻ يوجد ملخص باللغة العربية
Spin transfer torques allow the electrical manipulation of the magnetization at room temperature, which is desirable in spintronic devices such as spin transfer torque memories. When combined with spin-orbit coupling, they give rise to spin-orbit torques which are a more powerful tool for magnetization control and can enrich device functionalities. The engineering of spin-orbit torques, based mostly on the spin Hall effect, is being intensely pursued. Here we report that the oxidation of spin-orbit torque devices triggers a new mechanism of spin-orbit torque, which is about two times stronger than that based on the spin Hall effect. We thus introduce a way to engineer spin-orbit torques via oxygen manipulation. Combined with electrical gating of the oxygen level, our findings may also pave the way towards reconfigurable logic devices.
Spin transfer torques allow for electrical manipulation of magnetization at room temperature, which is utilized to build future electronic devices such as spin transfer torque memories. Recent experiments have discovered that the combination of the s
Spin-orbit torque facilitates efficient magnetization switching via an in-plane current in perpendicularly magnetized heavy metal/ferromagnet heterostructures. The efficiency of spin-orbit-torque-induced switching is determined by the charge-to-spin
Spin-orbit torques due to interfacial Rashba and spin Hall effects have been widely considered as a potentially more efficient approach than the conventional spin-transfer torque to control the magnetization of ferromagnets. We report a comprehensive
Spin-orbit torque manifested as an accumulated spin-polarized moment at nonmagnetic normal metal, and ferromagnet interfaces is a promising magnetization switching mechanism for spintronic devices. To fully exploit this in practice, materials with a
The magnitude of spin-orbit torque (SOT), exerted to a ferromagnet (FM) from an adjacent heavy metal (HM), strongly depends on the amount of spin currents absorbed in the FM. We exploit the large spin absorption at the Ru interface to manipulate the