ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of spin-orbit order in the spinel CuCr$_2$O$_4$

79   0   0.0 ( 0 )
 نشر من قبل Keisuke Tomiyasu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determined the magnetic structure of CuCr$_2$O$_4$ using neutron diffraction and irreducible representation analysis. The measurements identified a new phase between 155 K and 125 K as nearly collinear magnetic ordering in the Cr pyrochlore lattice. Below 125 K, a Cu-Cr ferrimagnetic component develops the noncollinear order. Along with the simultaneously obtained O positions and the quantum effect of spin-orbit coupling, the magnetic structure is understood to involve spin-orbit ordering, accompanied by an appreciably deformed orbital of presumably spin-only Cu and Cr.

قيم البحث

اقرأ أيضاً

We describe powder and single-crystal inelastic neutron scattering experiments on a spinel-type antiferromagnet GeCo$_2$O$_4$, represented by an effective total angular momentum J_eff = 1/2. Several types of non-dispersive short-range magnetic excita tions were discovered. The scattering intensity maps in $vec{Q}$ space are well reproduced by dynamical structure factor analyses using molecular model Hamiltonians. The results of analyses strongly suggest that the molecular excitations below T_N arise from a hidden molecular-singlet ground state, in which ferromagnetic subunits are antiferromagnetically coupled. The quasielastic excitations above T_N are interpreted as its precursor. A combination of frustration and J_eff = 1/2 might induce these quantum phenomena.
119 - K. Tomiyasu , K. Iwasa , H. Ueda 2014
Spin fluctuations were studied over a wide momentum ($hbar Q$) and energy ($E$) space in the frustrated $d$-electron heavy-fermion metal LiV$_2$O$_4$ by time-of-flight inelastic neutron scattering. We observed the overall $Q$$-$$E$ evolutions near th e characteristic $Q=0.6$ {AA}$^{-1}$ peak and found another weak broad magnetic peak around 2.4 {AA}$^{-1}$. The data are described by a simple response function, a highly itinerant magnetic form factor, and antiferromagnetic short-range spatial correlations, indicating that heavy-fermion formation is attributable to spin-orbit fluctuations with orbital hybridization.
281 - V. Yushankhai , T. Takimoto , 2008
Low frequency spin fluctuation dynamics in paramagnetic spinel LiV$_2$O$_4$, a rare 3$d$-electron heavy fermion system, is investigated. A parametrized self-consistent renormalization (SCR) theory of the dominant AFM spin fluctuations is developed an d applied to describe temperature and pressure dependences of the low-$T$ nuclear spin-lattice relaxation rate $1/T_1$ in this material. The experimental data for $1/T_1$ available down to $sim 1$K are well reproduced by the SCR theory, showing the development of AFM spin fluctuations as the paramagnetic metal approaches a magnetic instability under the applied pressure. The low-$T$ upturn of $1/T_1T$ detected below 0.6 K under the highest applied pressure of 4.74 GPa is explained as the nuclear spin relaxation effect due to the spin freezing of magnetic defects unavoidably present in the measured sample of LiV$_2$O$_4$.
Motivated by the interest in topological quantum paramagnets in candidate spin-$1$ magnets, we investigate the diamond lattice compound NiRh$_2$O$_4$ using {it ab initio} theory and model Hamiltonian approaches. Our density functional study, taking i nto account the unquenched orbital degrees of freedom, shows stabilization of $S=1$ and $L=1$ state. We highlight the importance of spin-orbit coupling, in addition to Coulomb correlations, in driving the insulating gap, and uncover frustrating large second-neighbor exchange mediated by Ni-Rh covalency. A single-site model Hamiltonian incorporating the large tetragonal distortion is shown to give rise to a spin-orbit entangled non-magnetic ground state, largely accounting for the entropy, magnetic susceptibility, and inelastic neutron scattering results. Incorporating inter-site exchange within a slave-boson theory, we show that exchange frustration can suppress exciton condensation. We capture the dispersive gapped magnetic modes, uncover `dark states invisible to neutrons, and make predictions for future experiments.
Ultrasound velocity measurements of the orbitally-frustrated GeCo$_2$O$_4$ reveal unusual elastic instabilities due to the phonon-spin coupling within the antiferromagnetic phase. Shear moduli exhibit anomalies arising from the coupling to short-rang e ferromagnetic excitations. Diplike anomalies in the magnetic-field dependence of elastic moduli reveal magnetic-field-induced orbital order-order transitions. These results strongly suggest the presence of geometrical orbital frustration which causes novel orbital phenomena within the antiferromagnetic phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا