ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit fluctuations in frustrated heavy-fermion metal LiV$_2$O$_4$

120   0   0.0 ( 0 )
 نشر من قبل Keisuke Tomiyasu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin fluctuations were studied over a wide momentum ($hbar Q$) and energy ($E$) space in the frustrated $d$-electron heavy-fermion metal LiV$_2$O$_4$ by time-of-flight inelastic neutron scattering. We observed the overall $Q$$-$$E$ evolutions near the characteristic $Q=0.6$ {AA}$^{-1}$ peak and found another weak broad magnetic peak around 2.4 {AA}$^{-1}$. The data are described by a simple response function, a highly itinerant magnetic form factor, and antiferromagnetic short-range spatial correlations, indicating that heavy-fermion formation is attributable to spin-orbit fluctuations with orbital hybridization.

قيم البحث

اقرأ أيضاً

281 - V. Yushankhai , T. Takimoto , 2008
Low frequency spin fluctuation dynamics in paramagnetic spinel LiV$_2$O$_4$, a rare 3$d$-electron heavy fermion system, is investigated. A parametrized self-consistent renormalization (SCR) theory of the dominant AFM spin fluctuations is developed an d applied to describe temperature and pressure dependences of the low-$T$ nuclear spin-lattice relaxation rate $1/T_1$ in this material. The experimental data for $1/T_1$ available down to $sim 1$K are well reproduced by the SCR theory, showing the development of AFM spin fluctuations as the paramagnetic metal approaches a magnetic instability under the applied pressure. The low-$T$ upturn of $1/T_1T$ detected below 0.6 K under the highest applied pressure of 4.74 GPa is explained as the nuclear spin relaxation effect due to the spin freezing of magnetic defects unavoidably present in the measured sample of LiV$_2$O$_4$.
Nodal-chain fermions, as novel topological states of matter, have been hotly discussed in non-magnetic materials. Here, by using first-principles calculations and symmetry analysis, we propose the realization of fully spin-polarized nodal chain in th e half-metal state of LiV$_2$O$_4$ compound. The material naturally shows a ferromagnetic ground state, and takes on a half-metal band structure with only the bands from the spin-up channel present near the Fermi level. The spin-up bands cross with each other, which form two types of nodal loops. These nodal loops arise from band inversion and are under the protection of the glide mirror symmetries. Remarkably, we find the nodal loops conjunct with each other and form chain-like nodal structure. Correspondingly, the w-shaped surface states are also fully spin-polarized. The fully spin-polarized nodal chain identified here has not been proposed in realistic materials before. An effective model is constructed to describe the nature of nodal chain. The effects of the electron correlation, the lattice strains, and the spin-orbit coupling are discussed. The fully spin-polarized bulk nodal-chain and the associated nontrivial surface states for a half-metal may open novel applications in spintronics.
We describe powder and single-crystal inelastic neutron scattering experiments on a spinel-type antiferromagnet GeCo$_2$O$_4$, represented by an effective total angular momentum J_eff = 1/2. Several types of non-dispersive short-range magnetic excita tions were discovered. The scattering intensity maps in $vec{Q}$ space are well reproduced by dynamical structure factor analyses using molecular model Hamiltonians. The results of analyses strongly suggest that the molecular excitations below T_N arise from a hidden molecular-singlet ground state, in which ferromagnetic subunits are antiferromagnetically coupled. The quasielastic excitations above T_N are interpreted as its precursor. A combination of frustration and J_eff = 1/2 might induce these quantum phenomena.
We report single-crystal neutron diffraction studies on a spinel antiferromagnet GeCo$_2$O$_4$, which exhibits magnetic order with a trigonal propagation vector and tetragonal lattice expansion ($c/asimeq1.001$) below $T_{rm N}=21$ K. For this incons istency between spin and lattice in symmetry, magnetic Bragg reflections with a tetragonal propagation vector were discovered below $T_{rm N}$. We discuss spin and orbital states of Co$^{2+}$ ion underlying the new magnetic component.
Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li$_2$Cu$_2$O(SO$_4$)$_2$ are investigated using inelastic neutron scattering, magnetic susceptibility and infrared absorption measurements. Despite the presenc e of a magnetic dimerization concomitant with the tetragonal-to-triclinic structural distortion occurring below 125 K, neutron scattering experiments reveal the presence of dispersive triplet excitations above a spin gap of $Delta = 10.6$ meV at 1.5 K, a value consistent with the estimates extracted from magnetic susceptibility. The likely detection of these spin excitations in infrared spectroscopy is explained by invoking a dynamic Dzyaloshinskii-Moriya mechanism in which light is coupled to the dimer singlet-to-triplet transition through an optical phonon. These results are qualitatively explained by exact diagonalization and higher-order perturbation calculations carried out on the basis of the dimerized spin Hamiltonian derived from first-principles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا