ﻻ يوجد ملخص باللغة العربية
Low frequency spin fluctuation dynamics in paramagnetic spinel LiV$_2$O$_4$, a rare 3$d$-electron heavy fermion system, is investigated. A parametrized self-consistent renormalization (SCR) theory of the dominant AFM spin fluctuations is developed and applied to describe temperature and pressure dependences of the low-$T$ nuclear spin-lattice relaxation rate $1/T_1$ in this material. The experimental data for $1/T_1$ available down to $sim 1$K are well reproduced by the SCR theory, showing the development of AFM spin fluctuations as the paramagnetic metal approaches a magnetic instability under the applied pressure. The low-$T$ upturn of $1/T_1T$ detected below 0.6 K under the highest applied pressure of 4.74 GPa is explained as the nuclear spin relaxation effect due to the spin freezing of magnetic defects unavoidably present in the measured sample of LiV$_2$O$_4$.
A phenomenological description for the dynamical spin susceptibility $chi({bf q},omega;T)$ observed in inelastic neutron scattering measurements on powder samples of LiV$_2$O$_4$ is developed in terms of the parametrized self-consistent renormalizati
Spin fluctuations were studied over a wide momentum ($hbar Q$) and energy ($E$) space in the frustrated $d$-electron heavy-fermion metal LiV$_2$O$_4$ by time-of-flight inelastic neutron scattering. We observed the overall $Q$$-$$E$ evolutions near th
We determined the magnetic structure of CuCr$_2$O$_4$ using neutron diffraction and irreducible representation analysis. The measurements identified a new phase between 155 K and 125 K as nearly collinear magnetic ordering in the Cr pyrochlore lattic
Muon spin relaxation ($mu$SR) measurements were carried out on SrDy$_2$O$_4$, a frustrated magnet featuring short range magnetic correlations at low temperatures. Zero-field muon spin depolarization measurements demonstrate that fast magnetic fluctua
We describe powder and single-crystal inelastic neutron scattering experiments on a spinel-type antiferromagnet GeCo$_2$O$_4$, represented by an effective total angular momentum J_eff = 1/2. Several types of non-dispersive short-range magnetic excita