ترغب بنشر مسار تعليمي؟ اضغط هنا

Modified dipole-dipole interaction and dissipation in an atomic ensemble near surfaces

132   0   0.0 ( 0 )
 نشر من قبل Beatriz Olmos
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study how the radiative properties of a dense ensemble of atoms can be modified when they are placed near or between metallic or dielectric surfaces. If the average separation between the atoms is comparable or smaller than the wavelength of the scattered photons, the coupling to the radiation field induces long-range coherent interactions based on the interatomic exchange of virtual photons. Moreover, the incoherent scattering of photons back to the electromagnetic field is known to be a many-body process, characterized by the appearance of superradiant and subradiant emission modes. By changing the radiation field properties, in this case by considering a layered medium where the atoms are near metallic or dielectric surfaces, these scattering properties can be dramatically modified. We perform a detailed study of these effects, with focus on experimentally relevant parameter regimes. We finish with a specific application in the context of quantum information storage, where the presence of a nearby surface is shown to increase the storage time of an atomic excitation that is transported across a one-dimensional chain.

قيم البحث

اقرأ أيضاً

We study the two-body bound states of a model Hamiltonian that describes the interaction between two field-oriented dipole moments. This model has been used extensively in many-body physics of ultracold polar molecules and magnetic atoms, but its few -body physics has been explored less fully. With a hard-wall short-range boundary condition, the dipole-dipole bound states are universal and exhibit a complicated pattern of avoided crossings between states of different character. For more realistic Lennard-Jones short-range interactions, we consider parameters representative of magnetic atoms and polar molecules. For magnetic atoms, the bound states are dominated by the Lennard-Jones potential, and the perturbative dipole-dipole interaction is suppressed by the special structure of van der Waals bound states. For polar molecules, we find a dense manifold of dipole-dipole bound states with many avoided crossings as a function of induced dipole or applied field, similar to those for hard-wall boundary conditions. This universal pattern of states may be observable spectroscopically for pairs of ultracold polar molecules.
We study theoretically and experimentally the competing blockade and anti-blockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole intera ctions and play a crucial role in the systems behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg populations dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate equation model to the experimental observations in [E. A. Goldschmidt, et al., PRL 116, 113001 (2016)] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drive.
We report on the local control of the transition frequency of a spin-$1/2$ encoded in two Rydberg levels of an individual atom by applying a state-selective light shift using an addressing beam. With this tool, we first study the spectrum of an eleme ntary system of two spins, tuning it from a non-resonant to a resonant regime, where bright (superradiant) and dark (subradiant) states emerge. We observe the collective enhancement of the microwave coupling to the bright state. We then show that after preparing an initial single spin excitation and letting it hop due to the spin-exchange interaction, we can freeze the dynamics at will with the addressing laser, while preserving the coherence of the system. In the context of quantum simulation, this scheme opens exciting prospects for engineering inhomogeneous XY spin Hamiltonians or preparing spin-imbalanced initial states.
The dipole blockade phenomenon is a direct consequence of strong dipole-dipole interaction, where only single atom can be excited because the doubly excited state is shifted out of resonance. The corresponding two-body entanglement with non-zero conc urrence induced by the dipole blockade effect is an important resource for quantum information processing. Here, we propose a novel physical mechanism for realizing dipole blockade without the dipole-dipole interaction, where two qubits coupled to a cavity, are driven by a coherent field. By suitably chosen placements of the qubits in the cavity and by adjusting the relative decay strengths of the qubits and cavity field, we kill many unwanted excitation pathways. This leads to dipole blockade. In addition, we show that these two qubits are strongly entangled over a broad regime of the system parameters. We show that a strong signature of this dipole blockade is the bunching property of the cavity photons which thus provides a possible measurement of the dipole blockade. We present dynamical features of the dipole blockade without dipole-dipole interaction. The proposal presented in this work can be realized not only in traditional cavity QED, but also in non-cavity topological photonics involving edge modes.
91 - B. Olmos , D. Yu , I. Lesanovsky 2013
The steady state of a driven dense ensemble of two-level atoms is determined from the competition of coherent laser excitation and decay that acts in a correlated way on several atoms simultaneously. We show that the presence of this non-local dissip ation lifts the direct link between the density of excited atoms and the photon emission rate which is typically present when atoms decay independently. The non-locality disconnects these static and dynamic observables so that a dynamical transition in one does not necessarily imply a transition in the other. Furthermore, the collective nature of the quantum jump operators governing the non-local decay results in the formation of spatial coherence in the steady state which can be measured by analyzing solely global quantities - the photon emission rate and the density of excited atoms. The experimental realization of the system with strontium atoms in a lattice is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا