ﻻ يوجد ملخص باللغة العربية
The dipole blockade phenomenon is a direct consequence of strong dipole-dipole interaction, where only single atom can be excited because the doubly excited state is shifted out of resonance. The corresponding two-body entanglement with non-zero concurrence induced by the dipole blockade effect is an important resource for quantum information processing. Here, we propose a novel physical mechanism for realizing dipole blockade without the dipole-dipole interaction, where two qubits coupled to a cavity, are driven by a coherent field. By suitably chosen placements of the qubits in the cavity and by adjusting the relative decay strengths of the qubits and cavity field, we kill many unwanted excitation pathways. This leads to dipole blockade. In addition, we show that these two qubits are strongly entangled over a broad regime of the system parameters. We show that a strong signature of this dipole blockade is the bunching property of the cavity photons which thus provides a possible measurement of the dipole blockade. We present dynamical features of the dipole blockade without dipole-dipole interaction. The proposal presented in this work can be realized not only in traditional cavity QED, but also in non-cavity topological photonics involving edge modes.
Dipole-dipole interaction between two two-level `atoms in photonic crystal nanocavity is investigated based on finite-difference time domain algorithm. This method includes both real and virtual photon effects and can be applied for dipoles with diff
Due to their strong and tunable interactions, Rydberg atoms can be used to realize fast two-qubit entangling gates. We propose a generalization of a generic two-qubit Rydberg-blockade gate to multi-qubit Rydberg-blockade gates which involve both many
We compute the interaction energies of a two-atom system placed in the middle of a perfectly reflecting planar cavity, in the perturbative regime. Explicit expressions are provided for the van der Waals potentials of two polarisable atomic dipoles as
We study the two-body bound states of a model Hamiltonian that describes the interaction between two field-oriented dipole moments. This model has been used extensively in many-body physics of ultracold polar molecules and magnetic atoms, but its few
We have observed resonant energy transfer between cold Rydberg atoms in spatially separated cylinders. Resonant dipole-dipole coupling excites the 49s atoms in one cylinder to the 49p state while the 41d atoms in the second cylinder are transferred d