ﻻ يوجد ملخص باللغة العربية
We study theoretically and experimentally the competing blockade and anti-blockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole interactions and play a crucial role in the systems behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg populations dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate equation model to the experimental observations in [E. A. Goldschmidt, et al., PRL 116, 113001 (2016)] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drive.
The resonant dipole-dipole interaction between highly excited Rydberg levels dominates the interaction of neutral atoms at short distances scaling as $1/r^3$. Here we take advantage of the combined effects of strong dipole-dipole interaction and mult
We present a combined experimental and theoretical study of the effects of Rydberg interactions on Autler-Townes spectra of ultracold gases of atomic strontium. Realizing two-photon Rydberg excitation via a long-lived triplet state allows us to probe
We perform a comprehensive investigation of the coupling between a Rydberg-dressed atomic gas and an ultra-cold plasma. Using simultaneous time-resolved measurements of both neutral atoms and ions, we show that plasma formation occurs via a Coulomb a
We report on the local control of the transition frequency of a spin-$1/2$ encoded in two Rydberg levels of an individual atom by applying a state-selective light shift using an addressing beam. With this tool, we first study the spectrum of an eleme
The dipole blockade phenomenon is a direct consequence of strong dipole-dipole interaction, where only single atom can be excited because the doubly excited state is shifted out of resonance. The corresponding two-body entanglement with non-zero conc