ﻻ يوجد ملخص باللغة العربية
We show that the three-dimensional map between fermions and bosons at finite temperature generalises for all odd dimensions $d>3$. We further argue that such a map has a nontrivial large $d$ limit. Evidence comes from studying the gap equations, the free energies and the partition functions of the $U(N)$ Gross-Neveu and CP$^{N-1}$ models for odd $dgeq 3$ in the presence of imaginary chemical potential. We find that the gap equations and the free energies can be written in terms of the Bloch-Wigner-Ramakrishnan $D_d(z)$ functions analysed by Zagier. Since $D_2(z)$ gives the volume of ideal tetrahedra in 3$d$ hyperbolic space our three-dimensional results are related to resent studies of complex Chern-Simons theories, while for $d>3$ they yield corresponding higher dimensional generalizations. As a spinoff, we observe that particular complex saddles of the partition functions correspond to the zeros and the extrema of the Clausen functions $Cl_d(theta)$ with odd and even index $d$ respectively. These saddles lie on the unit circle at positions remarkably well approximated by a sequence of rational multiples of $pi$.
We study the three-dimensional $U(N)$ Gross-Neveu and CP$^{N-1}$ models in the canonical formalism with fixed $U(1)$ charge. For large-$N$ this is closely related to coupling the models to abelian Chern-Simons in a monopole background. We show that t
We obtain a Seiberg-Witten map for the gauge sector of multiple D$p$-branes in a large R-R $(p-1)$-form field background up to the first-order in the inverse R-R field background. By applying the Seiberg-Witten map and then electromagnetic duality on
When a quantum field theory possesses topological excitations in a phase with spontaneously broken symmetry, these are created by operators which are non-local with respect to the order parameter. Due to non-locality, such disorder operators have non
In this paper, the issues of the quark mass hierarchies and the Cabbibo Kobayashi Maskawa mixing are analyzed in a class of intersecting D-brane configurations with Standard Model gauge symmetry. The relevant mass matrices are constructed taking into
We derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator