ﻻ يوجد ملخص باللغة العربية
We study the three-dimensional $U(N)$ Gross-Neveu and CP$^{N-1}$ models in the canonical formalism with fixed $U(1)$ charge. For large-$N$ this is closely related to coupling the models to abelian Chern-Simons in a monopole background. We show that the presence of the imaginary chemical potential for the $U(1)$ charge makes the phase structure of the models remarkably similar. We calculate their respective large-$N$ free energy densities and show that they are mapped into each other in a precise way. Intriguingly, the free energy map involves the Bloch-Wigner function and its generalizations introduced by Zagier. We expect that our results are connected to the recently discussed $3d$ bosonization.
We study the phase structure of imaginary chemical potential. We calculate the Polyakov loop using clover-improved Wilson action and renormalization improved gauge action. We obtain a two-state signals indicating the first order phase transition fo
We show that the three-dimensional map between fermions and bosons at finite temperature generalises for all odd dimensions $d>3$. We further argue that such a map has a nontrivial large $d$ limit. Evidence comes from studying the gap equations, the
We consider bosonic random matrix partition functions at nonzero chemical potential and compare the chiral condensate, the baryon number density and the baryon number susceptibility to the result of the corresponding fermionic partition function. We
We extend a bottom up holographic model, which has been used in studying the color superconductivity in QCD, to the imaginary chemical potential ($mu_I$) region, and the phase diagram is studied on the $mu_I$-temperature (T) plane. The analysis is pe
We investigate chemical-potential ($mu$) dependence of the static-quark free energies in both the real and imaginary $mu$ regions, using the clover-improved two-flavor Wilson fermion action and the renormalization-group improved Iwasaki gauge action.