ﻻ يوجد ملخص باللغة العربية
Tracking the behaviour of stochastic systems is a crucial task in the statistical sciences. It has recently been shown that quantum models can faithfully simulate such processes whilst retaining less information about the past behaviour of the system than the optimal classical models. We extend these results to general temporal and symbolic dynamics. Our systematic protocol for quantum model construction relies only on an elementary description of the dynamics of the process. This circumvents restrictions on corresponding classical construction protocols, and allows for a broader range of processes to be modelled efficiently. We illustrate our method with an example exhibiting an apparent unbounded memory advantage of the quantum model compared to its optimal classical counterpart.
The spectral form factor (SFF), characterizing statistics of energy eigenvalues, is a key diagnostic of many-body quantum chaos. In addition, partial spectral form factors (pSFFs) can be defined which refer to subsystems of the many-body system. They
Empirical temporal networks display strong heterogeneities in their dynamics, which profoundly affect processes taking place on these networks, such as rumor and epidemic spreading. Despite the recent wealth of data on temporal networks, little work
A growing body of work has established the modelling of stochastic processes as a promising area of application for quantum techologies; it has been shown that quantum models are able to replicate the future statistics of a stochastic process whilst
We perform an in-depth comparison of quantum annealing with several classical optimisation techniques, namely thermal annealing, Nelder-Mead, and gradient descent. We begin with a direct study of the 2D Ising model on a quantum annealer, and compare
Gauge theories are the cornerstone of our understanding of fundamental interactions among particles. Their properties are often probed in dynamical experiments, such as those performed at ion colliders and high-intensity laser facilities. Describing