ﻻ يوجد ملخص باللغة العربية
We perform an in-depth comparison of quantum annealing with several classical optimisation techniques, namely thermal annealing, Nelder-Mead, and gradient descent. We begin with a direct study of the 2D Ising model on a quantum annealer, and compare its properties directly with those of the thermal 2D Ising model. These properties include an Ising-like phase transition that can be induced by either a change in quantum-ness of the theory, or by a scaling the Ising couplings up or down. This behaviour is in accord with what is expected from the physical understanding of the quantum system. We then go on to demonstrate the efficacy of the quantum annealer at minimising several increasingly hard two dimensional potentials. For all the potentials we find the general behaviour that Nelder-Mead and gradient descent methods are very susceptible to becoming trapped in false minima, while the thermal anneal method is somewhat better at discovering the true minimum. However, and despite current limitations on its size, the quantum annealer performs a minimisation very markedly better than any of these classical techniques. A quantum anneal can be designed so that the system almost never gets trapped in a false minimum, and rapidly and successfully minimises the potentials.
Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and con
The spectral fluctuations of complex quantum systems, in appropriate limit, are known to be consistent with that obtained from random matrices. However, this relation between the spectral fluctuations of physical systems and random matrices is valid
Optimal flight gate assignment is a highly relevant optimization problem from airport management. Among others, an important goal is the minimization of the total transit time of the passengers. The corresponding objective function is quadratic in th
The number of topological defects created in a system driven through a quantum phase transition exhibits a power-law scaling with the driving time. This universal scaling law is the key prediction of the Kibble-Zurek mechanism (KZM), and testing it u
The application in cryptography of quantum algorithms for prime factorization fostered the interest in quantum computing. However, quantum computers, and particularly quantum annealers, can also be helpful to construct secure cryptographic keys. Inde