ﻻ يوجد ملخص باللغة العربية
We present a series of dynamical maps for fictitious 3-planets systems in initially circular coplanar orbits. These maps have unveiled a rich resonant structure involving two or three planets, as well as indicating possible migration routes from secular to double resonances or pure 3-planet commensurabilities. These structures are then compared to the present-day orbital architecture of observed resonant chains. In a second part of the paper we describe N-body simulations of type-I migration. Depending on the orbital decay timescale, we show that 3-planet systems may be trapped in different combinations of independent commensurabilities: (i) double resonances, (ii) intersection between a 2-planet and a first-order 3-planet resonance, and (iii) simultaneous libration in two first-order 3-planet resonances. These latter outcomes are found for slow migrations, while double resonances are almost always the final outcome in high-density disks. Finally, we discuss an application to the TRAPPIST-1 system. We find that, for low migration rates and planetary masses of the order of the estimated values, most 3-planet sub-systems are able to reach the observed double resonances after following evolutionary routes defined by pure 3-planet resonances. The final orbital configuration shows resonance offsets comparable with present-day values without the need of tidal dissipation. For the 8/5 resonance proposed to dominate the dynamics of the two inner planets, we find little evidence of its dynamical significance; instead, we propose that this relation between mean motions could be a consequence of the interaction between a pure 3-planet resonance and a 2-planet commensurability between planets c and d.
A commonly noted feature of the population of multi-planet extrasolar systems is the rarity of planet pairs in low-order mean-motion resonances. We revisit the physics of resonance capture via convergent disk-driven migration. We point out that for p
Many planets are observed in stellar binary systems, and their frequency may be comparable to that of planetary systems around single stars. Binary stellar evolution in such systems influences the dynamical evolution of the resident planets. Here we
We study the capture and crossing probabilities into the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the ave
We have investigated i) the formation of gravitationally bounded pairs of gas-giant planets (which we call binary planets) from capturing each other through planet-planet dynamical tide during their close encounters and ii) the following long-term or
The SIM Lite mission will undertake several planet surveys. One of them, the Deep Planet Survey, is designed to detect Earth-mass exoplanets in the habitable zones of nearby main sequence stars. A double blind study has been conducted to assess the c