ﻻ يوجد ملخص باللغة العربية
We have investigated i) the formation of gravitationally bounded pairs of gas-giant planets (which we call binary planets) from capturing each other through planet-planet dynamical tide during their close encounters and ii) the following long-term orbital evolution due to planet-planet and planet-star {it quasi-static} tides. For the initial evolution in phase i), we carried out N-body simulations of the systems consisting of three jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing and this fraction is almost independent of the initial stellarcentric semi-major axes of the planets, while ejection and merging rates sensitively depend on the semi-major axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in later phase ii). The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for main-sequence life time of solar-type stars (~10Gyrs), if the binary planets are beyond ~0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at >0.3AU.
Planet-planet scattering best explains the eccentricity distribution of extrasolar giant planets. Past literature showed that the orbits of planets evolve due to planet-planet scattering. This work studies the spin evolution of planets in planet-plan
A commonly noted feature of the population of multi-planet extrasolar systems is the rarity of planet pairs in low-order mean-motion resonances. We revisit the physics of resonance capture via convergent disk-driven migration. We point out that for p
Wide-orbit exoplanets are starting to be detected, and planetary formation models are under development to understand their properties. We propose a population of Oort planets around other stars, forming by a mechanism analogous to how the Solar Syst
Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close bi
The (yet-to-be confirmed) discovery of a Neptune-sized moon around the ~3.2 Jupiter-mass planet in Kepler 1625 puts interesting constraints on the formation of the system. In particular, the relatively wide orbit of the moon around the planet, at ~40