ﻻ يوجد ملخص باللغة العربية
Many planets are observed in stellar binary systems, and their frequency may be comparable to that of planetary systems around single stars. Binary stellar evolution in such systems influences the dynamical evolution of the resident planets. Here we study the evolution of a single planet orbiting one star in an evolving binary system. We find that stellar evolution can trigger dynamical instabilities that drive planets into chaotic orbits. This instability leads to planet-star collisions, exchange of the planet between the binary stars (star-hoppers), and ejection of the planet from the system. The means by which planets can be recaptured is similar to the pull-down capture mechanism for irregular solar system satellites. Because planets often suffer close encounters with the primary on the asymptotic giant branch, captures during a collision with the stellar envelope are also possible. Such capture could populate the habitable zone around white dwarfs.
The potential for hosting photosynthetic life on Earth-like planets within binary/multiple stellar systems was evaluated by modelling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in: (i)
We present a series of dynamical maps for fictitious 3-planets systems in initially circular coplanar orbits. These maps have unveiled a rich resonant structure involving two or three planets, as well as indicating possible migration routes from secu
Magnetic interactions between close-in planets and their host star can play an important role in the secular orbital evolution of the planets, as well as the rotational evolution of their host. As long as the planet orbits inside the Alfven surface o
A commonly noted feature of the population of multi-planet extrasolar systems is the rarity of planet pairs in low-order mean-motion resonances. We revisit the physics of resonance capture via convergent disk-driven migration. We point out that for p
Many stars are in binaries or higher-order multiple stellar systems. Although in recent years a large number of binaries have been proven to host exoplanets, how planet formation proceeds in multiple stellar systems has not been studied much yet from