ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal-Poor Type II Cepheids with Periods Less Than Three Days

46   0   0.0 ( 0 )
 نشر من قبل Elizabeth Farrell
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have analysed 10 high resolution spectra of Type II Cepheids with periods less than 3 days. We find that they clearly separate into two groups: those with near or slightly below solar metallicities, and those with [Fe/H] between --1.5 and --2.0. While the former are usually called BL~Her stars, we suggest that the latter be called UY~Eri stars. The UY~Eri subclass appears to be similar to the short period variables in globular clusters of the Galactic Halo. Globular clusters with [Fe/H] $textgreater$ --1.0 almost never have Type II Cepheids.

قيم البحث

اقرأ أيضاً

We report the first detection of the Pb II line at 2203.534 Angstroms in three metal-poor stars, using ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We perform a standard abundance ana lysis assuming local thermodynamic equilibrium (LTE) to derive lead (Pb, Z=82) abundances. The Pb II line yields a higher abundance than Pb I lines by +0.36 +/- 0.34 dex and +0.49 +/- 0.28 dex in the stars HD 94028 and HD 196944, where Pb I lines had been detected previously. The Pb II line is likely formed in LTE, and these offsets affirm previous calculations showing that Pb I lines commonly used as abundance indicators underestimate the Pb abundance in LTE. Pb is enhanced in the s-process-enriched stars HD 94028 ([Pb/Fe] = +0.95 +/- 0.14) and HD 196944 ([Pb/Fe] = +2.28 +/- 0.23), and we show that Pb-208 is the dominant Pb isotope in these two stars. The log epsilon(Pb/Eu) ratio in the r-process-enhanced star HD 222925 is 0.76 +/- 0.14, which matches the Solar System r-process ratio and indicates that the Solar System r-process residuals for Pb are, in aggregate, correct. The Th/Pb chronometer in HD 222925 yields an age of 8.2 +/- 5.8 Gyr, and we highlight the potential of the Th/Pb chronometer as a relatively model-insensitive age indicator in r-process-enhanced stars.
109 - G. Bono , V.F. Braga (1 2020
We discuss the observed pulsation properties of Type II Cepheids (TIICs) in the Galaxy and Magellanic Clouds. The period (P) distributions, luminosity amplitudes and population ratios of the three different sub-groups (BL Herculis[BLH, P<5 days], W V irginis [WV, 5<P<20 days], RV Tauri [RVT, P>20 days]) are quite similar in different stellar systems, suggesting a common evolutionary channel and a mild dependence on both metallicity and environment. We present a homogeneous theoretical framework based on Horizontal Branch (HB) evolutionary models, envisaging that TIICs are mainly old (t<10 Gyr), low-mass stars. The BLHs are predicted to be post early asymptotic giant branch (PEAGB) stars (double shell burning) on the verge of reaching their AGB track (first crossing of the instability strip), while WVs are a mix of PEAGB and post-AGB stars (hydrogen shell burning) moving from cool to hot (second crossing). Thus suggesting that they are a single group of variable stars. RVTs are predicted to be a mix of post-AGB stars along their second crossing (short-period tail) and thermally pulsing AGB stars (long-period tail) evolving towards their white dwarf cooling sequence. We also present several sets of synthetic HB models by assuming a bimodal mass distribution along the HB. Theory suggests, in agreement with observations, that TIIC pulsation properties marginally depend on metallicity. Predicted period distributions and population ratios for BLHs agree quite well with observations, while those for WVs and RVTs are almost a factor of two smaller and larger than observed, respectively. Moreover, the predicted period distributions for WVs peak at periods shorter than observed, while those for RVTs display a long period tail not supported by observations. We investigate several avenues to explain these differences, but more detailed calculations are required to address them.
We investigate the theoretical scenario concerning the large sample of variables recently discovered in the dwarf, metal-poor irregular galaxy Leo A, focusing the attention on the Anomalous Cepheid phenomenon and its correlation with RR Lyrae stars, Classical and Population II Cepheids. To this purpose, we make use of suitable stellar and pulsation models to depict the pulsational history of evolutionary structures with metallicity Z=0.0004, finding that He-burning pulsators are expected only outside the mass interval ~ 0.8-1.7 Mo. The dependence on metal content of this scenario has been investigated over the range Z=0.0002 to 0.008. One finds that the edges of the pulsational strip for the more massive class of pulsators appear independent of metallicity, but with the minimum mass of these bright pulsators which decreases when decreasing the metallicity, thus decreasing the predicted minimum luminosity and period. Comparison with data for Cepheids in Leo A and in the moderately metal rich extragalactic stellar system Sextans A discloses an encouraging agreement with the predicted pulsational scenario. On this basis, we predict that in a stellar system where both RR Lyrae stars and Cepheids are observed, their magnitude difference may help in constraining both the metal content and the distance. The current classification of metal-poor Cepheids is shortly discussed, advancing the suggestion for an updated terminology abreast of the current knowledge of stellar evolution.
In a step toward understanding the origin of the Galactic Halo, we have reexamined Type II Cepheids (T2C) in the field with new input from the second data release (DR2) of Gaia. For 45 T2C with periods from 1 to 20 days, parallaxes, proper motions, a nd [Fe/H] values are available for 25 stars. Only 5 show [Fe/H] < -1.5, while the remaining stars show thick disk kinematics and [Fe/H] > -0.90. We have compared the T2C stars of the field with their cousins in the globular clusters of the Halo and found that the globular clusters with T2C stars show metallicities and kinematics of a pure Halo population. The globulars may have formed during the overall collapse of the Galaxy while the individual thick disk T2C stars may have been captured from small systems that self-enriched prior to capture. The relationship of these two populations to the micro-galaxies currently recognized as surrounding the Galaxy is unclear.
Type II Cepheids are both useful distance indicators and tracers of old age stellar populations in their host galaxy. We summarize near-infrared observations of type II Cepheids in the Large Magellanic Cloud and discuss the absolute calibration of th eir Period-Luminosity relations. Combining with the near-infrared data for type II Cepheids in the Galactic bulge from the VISTA VVV survey, we estimated a robust distance to the Galactic center. We found that type II Cepheids trace the spherically symmetric spatial distribution with possible evidence of ellipsoidal structure, similar to RR Lyrae stars. Together with Gaia and VVV proper motions, type II Cepheids were found to trace the old, metal-poor, kinematically hot stellar populations in the Galactic bulge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا