ترغب بنشر مسار تعليمي؟ اضغط هنا

Type II Cepheids as stellar tracers and distance indicators

75   0   0.0 ( 0 )
 نشر من قبل Anupam Bhardwaj
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type II Cepheids are both useful distance indicators and tracers of old age stellar populations in their host galaxy. We summarize near-infrared observations of type II Cepheids in the Large Magellanic Cloud and discuss the absolute calibration of their Period-Luminosity relations. Combining with the near-infrared data for type II Cepheids in the Galactic bulge from the VISTA VVV survey, we estimated a robust distance to the Galactic center. We found that type II Cepheids trace the spherically symmetric spatial distribution with possible evidence of ellipsoidal structure, similar to RR Lyrae stars. Together with Gaia and VVV proper motions, type II Cepheids were found to trace the old, metal-poor, kinematically hot stellar populations in the Galactic bulge.



قيم البحث

اقرأ أيضاً

Motivated by the advantages of observing at near-IR wavelengths, we investigate Type II supernovae (SNe II) as distance indicators at those wavelengths through the Photospheric Magnitude Method (PMM). For the analysis, we use $BVIJH$ photometry and o ptical spectroscopy of 24 SNe II during the photospheric phase. To correct photometry for extinction and redshift effects, we compute total-to-selective broadband extinction ratios and $K$-corrections up to $z=0.032$. To estimate host galaxy colour excesses, we use the colour-colour curve method with the $V!-!I$ versus $B!-!V$ as colour combination. We calibrate the PMM using four SNe II in galaxies having Tip of the Red Giant Branch distances. Among our 24 SNe II, nine are at $cz>2000$ km s$^{-1}$, which we use to construct Hubble diagrams (HDs). To further explore the PMM distance precision, we include into HDs the four SNe used for calibration and other two in galaxies with Cepheid and SN Ia distances. With a set of 15 SNe II we obtain a HD rms of 0.13 mag for the $J$-band, which compares to the rms of 0.15-0.26 mag for optical bands. This reflects the benefits of measuring PMM distances with near-IR instead of optical photometry. With the evidence we have, we can set the PMM distance precision with $J$-band below 10 per cent with a confidence level of 99 per cent.
109 - G. Bono , V.F. Braga (1 2020
We discuss the observed pulsation properties of Type II Cepheids (TIICs) in the Galaxy and Magellanic Clouds. The period (P) distributions, luminosity amplitudes and population ratios of the three different sub-groups (BL Herculis[BLH, P<5 days], W V irginis [WV, 5<P<20 days], RV Tauri [RVT, P>20 days]) are quite similar in different stellar systems, suggesting a common evolutionary channel and a mild dependence on both metallicity and environment. We present a homogeneous theoretical framework based on Horizontal Branch (HB) evolutionary models, envisaging that TIICs are mainly old (t<10 Gyr), low-mass stars. The BLHs are predicted to be post early asymptotic giant branch (PEAGB) stars (double shell burning) on the verge of reaching their AGB track (first crossing of the instability strip), while WVs are a mix of PEAGB and post-AGB stars (hydrogen shell burning) moving from cool to hot (second crossing). Thus suggesting that they are a single group of variable stars. RVTs are predicted to be a mix of post-AGB stars along their second crossing (short-period tail) and thermally pulsing AGB stars (long-period tail) evolving towards their white dwarf cooling sequence. We also present several sets of synthetic HB models by assuming a bimodal mass distribution along the HB. Theory suggests, in agreement with observations, that TIIC pulsation properties marginally depend on metallicity. Predicted period distributions and population ratios for BLHs agree quite well with observations, while those for WVs and RVTs are almost a factor of two smaller and larger than observed, respectively. Moreover, the predicted period distributions for WVs peak at periods shorter than observed, while those for RVTs display a long period tail not supported by observations. We investigate several avenues to explain these differences, but more detailed calculations are required to address them.
Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.
87 - E. R. Stanway 2020
The binary fraction of a stellar population can have pronounced effects on its properties, and in particular the number counts of different massive star types, and the relative subtype rates of the supernovae which end their lives. Here we use binary population synthesis models with a binary fraction that varies with initial mass to test the effects on resolved stellar populations and supernovae, and ask whether these can constrain the poorly-known binary fraction in different mass and metallicity regimes. We show that Wolf-Rayet star subtype ratios are valuable binary diagnostics, but require large samples to distinguish by models. Uncertainties in which stellar models would be spectroscopically classified as Wolf-Rayet stars are explored. The ratio of thermonuclear, stripped envelope and other core-collapse supernovae may prove a more accessible test and upcoming surveys will be sufficient to constrain both the high mass and low mass binary fraction in the z < 1 galaxy population.
Quasars accreting matter at very high rates (known as extreme Population A [xA] quasars, possibly associated with super-Eddington accreting massive black holes) may provide a new class of distance indicators covering cosmic epochs from present day up to less than 1 Gyr from the Big Bang. At a more fundamental level, xA quasars are of special interest in studies of the physics of AGNs and host galaxy evolution. However, their observational properties are largely unknown. xA quasars can be identified in relatively large numbers from major optical surveys over a broad range of redshifts, thanks to selection criteria defined from the systematic changes along the quasars main sequence. It has been possible to build a sample of about 250 quasars at low and intermediate redshift, and larger samples can be easily selected from the latest data releases of the Sloan Digital Sky Survey. A large sample can clarify the main properties of xA quasars which are expected - unlike the general population of quasars - to radiate at an extreme, well defined Eddington ratio with small scatter. As a result of the small scatter in Eddington ratio shown by xA quasars, we propose a method to derive the main cosmological parameters based on redshift-independent virial luminosity estimates from measurements of emission line widths, roughly equivalent to the luminosity estimates based from line width in early and late type galaxies. A major issue related to the cosmological application of the xA quasar luminosity estimates from line widths is the identification of proper emission lines whose broadening is predominantly virial over a wide range of redshift and luminosity. We report on preliminary developments using the AlIII 1860 intermediate ionization line and the Hydrogen Balmer line H-beta as virial broadening estimators, and we briefly discuss the perspective of the method based on xA quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا