ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Pb II in the Ultraviolet Spectra of Three Metal-Poor Stars

99   0   0.0 ( 0 )
 نشر من قبل Ian Roederer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first detection of the Pb II line at 2203.534 Angstroms in three metal-poor stars, using ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We perform a standard abundance analysis assuming local thermodynamic equilibrium (LTE) to derive lead (Pb, Z=82) abundances. The Pb II line yields a higher abundance than Pb I lines by +0.36 +/- 0.34 dex and +0.49 +/- 0.28 dex in the stars HD 94028 and HD 196944, where Pb I lines had been detected previously. The Pb II line is likely formed in LTE, and these offsets affirm previous calculations showing that Pb I lines commonly used as abundance indicators underestimate the Pb abundance in LTE. Pb is enhanced in the s-process-enriched stars HD 94028 ([Pb/Fe] = +0.95 +/- 0.14) and HD 196944 ([Pb/Fe] = +2.28 +/- 0.23), and we show that Pb-208 is the dominant Pb isotope in these two stars. The log epsilon(Pb/Eu) ratio in the r-process-enhanced star HD 222925 is 0.76 +/- 0.14, which matches the Solar System r-process ratio and indicates that the Solar System r-process residuals for Pb are, in aggregate, correct. The Th/Pb chronometer in HD 222925 yields an age of 8.2 +/- 5.8 Gyr, and we highlight the potential of the Th/Pb chronometer as a relatively model-insensitive age indicator in r-process-enhanced stars.



قيم البحث

اقرأ أيضاً

We report the detection of an Al II line at 2669.155 Angstroms in 11 metal-poor stars, using ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We derive Al abundances from this line using a standard abundance analysis, assuming local thermodynamic equilibrium (LTE). The mean [Al/Fe] ratio is -0.06 +/- 0.04 (sigma = 0.22) for these 11 stars spanning -3.9 < [Fe/H] < -1.3, or [Al/Fe] = -0.10 +/- 0.04 (sigma = 0.18) for 9 stars spanning -3.0 < [Fe/H] < -1.3 if two carbon-enhanced stars are excluded. We use these abundances to perform an empirical test of non-LTE (NLTE) abundance corrections predicted for resonance lines of Al I, including the commonly-used optical Al I line at 3961 Angstroms. The Al II line is formed in LTE, and the abundance derived from this line matches that derived from high-excitation Al I lines predicted to have minimal NLTE corrections. The differences between the abundance derived from the Al II line and the LTE abundance derived from Al I resonance lines are +0.4 to +0.9 dex, which match the predicted NLTE corrections for the Al I resonance lines. We conclude that the NLTE abundance calculations are approximately correct and should be applied to LTE abundances derived from Al I lines.
Our current understanding of the chemical evolution of the Universe is that a first generation of stars was formed out of primordial material, completely devoid of metals (Pop III stars). This first population of stars comprised massive stars that ex ploded as supernovae disseminating the metals they synthesised in the interstellar medium. These massive stars are long dead and cannot be observed in the local Universe. Among very metal poor stars (metallicity below -2.0) we expect to find the direct descendants of these pristine metal factories. The chemical composition of these stars provides us indirect information on the nature of the Pop III stars, their masses, luminosities and mode of explosion. The constraints are stronger if the chemical inventory is more complete, more chemical elements and isotopic ratios are measured for each star. Unfortunately the lower the metallicity of the star, the weaker the lines. Access to the space UV spectral range gives us crucial supplementary information. To start with, it allows access to some very strong Fe lines that may allow to measure the abundance of this element in stars for which this was not possible from the ground-accessible UV spectra. The number of such stars is steadily increasing. Next the UV range allows us to measure elements that cannot be measured from ground-based spectra like P, Ge, As, Se, Cd, Te, Lu, Os, Ir, Pt, Au. In addition it is fundamental for measuring other elements that can be accessed from earth, but with great difficulty, like C, S, Cu, Zn, Pb. The Hubble space telescope, with its limited collecting power made this possible only for very few stars. Old metal poor stars are cool, of spectral types F,G,K, and their UV flux is low. The availability of a UV high resolution spectrograph fed by a large area space telescope will open an unprecedented window on the early evolution of our Galaxy.
Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD+17 3248, HD 108317, and HD 128279. Tellurium (Te, Z=52) is found at the second r-process peak (A=130) associated with the N=82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium is predominantly produced in the main component of the r-process, along with the rare earth elements.
We present chemical abundance measurements of three stars in the ultra-faint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high resolution spectroscopic observations we measure the metallicity of the thr ee stars as well as abundance ratios of several $alpha$-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] $sim -2.6$ and are not $alpha$-enhanced ([$alpha$/Fe] $sim 0.0$). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultra-faint dwarfs and hints at an entirely different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature including extended star formation, a Population III supernova, and a possible association with the Large Magellanic Cloud.
We have obtained new detailed abundances of the Fe-group elements Sc through Zn (Z=21-30) in three very metal-poor ([Fe/H] $approx -3$) stars: BD 03 740, BD -13 3442 and CD -33 1173. High-resolution ultraviolet HST/STIS spectra in the wavelength rang e 2300-3050AA were gathered, and complemented by an assortment of optical echelle spectra. The analysis featured recent laboratory atomic data for number of neutral and ionized species for all Fe-group elements except Cu and Zn. A detailed examination of scandium, titanium, and vanadium abundances in large-sample spectroscopic surveys indicates that they are positively correlated in stars with [Fe/H]<-$2. The abundances of these elements in BD 03 740, BD -13 3442 and CD -33 1173 and HD 84937. (studied in a previous paper of this series) are in accord with these trends and lie at the high end of the correlations. Six elements have detectable neutral and ionized features, and generally their abundances are in reasonable agreement. For Cr we find only minimal abundance disagreement between the neutral (mean of [Cri/Fe]=+0.01) and ionized species (mean of [Crii/Fe]=+0.08), unlike most studies in the past. The prominent exception is Co, for which the neutral species indicates a significant overabundance (mean of [Co/H]=-2.53), while no such enhancement is seen for the ionized species (mean of [Coii/H]=-2.93). These new stellar abundances, especially the correlations among Sc, Ti, and V, suggest that models of element production in early high-mass metal-poor stars should be revisited.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا