ﻻ يوجد ملخص باللغة العربية
This paper investigates noncoherent detection in a two-way relay channel operated with physical layer network coding (PNC), assuming FSK modulation and short-packet transmissions. For noncoherent detection, the detector has access to the magnitude but not the phase of the received signal. For conventional communication in which a receiver receives the signal from a transmitter only, the phase does not affect the magnitude, hence the performance of the noncoherent detector is independent of the phase. PNC, however, is a multiuser system in which a receiver receives signals from multiple transmitters simultaneously. The relative phase of the signals from different transmitters affects the received signal magnitude through constructive-destructive interference. In particular, for good performance, the noncoherent detector in PNC must take into account the influence of the relative phase on the signal magnitude. Building on this observation, this paper delves into the fundamentals of PNC noncoherent detector design. To avoid excessive overhead, we do away from preambles. We show how the relative phase can be deduced directly from the magnitudes of the received data symbols. Numerical results show that our detector performs nearly as well as a fictitious optimal detector that has perfect knowledge of the channel gains and relative phase.
This paper investigates coherent detection for physical-layer network coding (PNC) with short packet transmissions in a two-way relay channel (TWRC). PNC turns superimposed EM waves into network-coded messages to improve throughput in a relay system.
Leveraging recent progress in physical-layer network coding we propose a new approach to random access: When packets collide, it is possible to recover a linear combination of the packets at the receiver. Over many rounds of transmission, the receive
This paper investigates the application of physical-layer network coding (PNC) to Industrial Internet-of-Things (IIoT) where a controller and a robot are out of each others transmission range, and they exchange messages with the assistance of a relay
In this paper we introduce Neural Network Coding(NNC), a data-driven approach to joint source and network coding. In NNC, the encoders at each source and intermediate node, as well as the decoder at each destination node, are neural networks which ar
Slotted ALOHA can benefit from physical-layer network coding (PNC) by decoding one or multiple linear combinations of the packets simultaneously transmitted in a timeslot, forming a system of linear equations. Different systems of linear equations ar