ﻻ يوجد ملخص باللغة العربية
We study the dynamics of a skyrmion in a magnetic insulating nanowire in the presence of time-dependent oscillating magnetic field gradients. These ac fields act as a net driving force on the skyrmion via its own intrinsic magnetic excitations. In a microscopic quantum field theory approach we include the unavoidable coupling of the external field to the magnons, which gives rise to time-dependent dissipation for the skyrmion. We demonstrate that the magnetic ac field induces a super-Ohmic to Ohmic crossover behavior for the skyrmion dissipation kernels with time-dependent Ohmic terms. The ac driving of the magnon bath at resonance results in a unidirectional helical propagation of the skyrmion in addition to the otherwise periodic bounded motion.
Skyrmions are localized solitonic spin textures with protected topology, which are promising as information carriers in ultra-dense and energy-efficient logic and memory devices. Recently, magnetic skyrmions have been observed in magnetic thin films,
A strategy to drive skyrmion motion by a combination of an anisotropy gradient and spin Hall effect has recently been demonstrated. Here, we study the fundamental properties of this type of motion by combining micromagnetic simulations and a generali
We investigate the intrinsic magnon spin current in a noncollinear antiferromagnetic insulator. We introduce a definition of the magnon spin current in a noncollinear antiferromagnet and find that it is in general non-conserved, but for certain symme
A magnetic skyrmion induced on a ferromagnetic topological insulator (TI) is a real-space manifestation of the chiral spin texture in the momentum space, and can be a carrier for information processing by manipulating it in tailored structures. Here,
In spectroscopy, it is conventional to treat pulses much stronger than the linewidth as delta-functions. In NMR, this assumption leads to the prediction that pi pulses do not refocus the dipolar coupling. However, NMR spin echo measurements in dipola