ترغب بنشر مسار تعليمي؟ اضغط هنا

Void growth and coalescence in irradiated copper under deformation

100   0   0.0 ( 0 )
 نشر من قبل J\\'er\\'emy Hure
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A decrease of fracture toughness of irradiated materials is usually observed, as reported for austenitic stainless steels in Light Water Reactors (LWRs) or copper alloys for fusion applications. For a wide range of applications (e.g. structural steels irradiated at low homologous temperature), void growth and coalescence fracture mechanism has been shown to be still predominant. As a consequence, a comprehensive study of the effects of irradiation-induced hardening mechanisms on void growth and coalescence in irradiated materials is required. The effects of irradiation on ductile fracture mechanisms - void growth to coalescence - are assessed in this study based on model experiments. Pure copper thin tensile samples have been irradiated with protons up to 0.01 dpa. Micron-scale holes drilled through the thickness of these samples subjected to uniaxial loading conditions allow a detailed description of void growth and coalescence. In this study, experimental data show that physical mechanisms of micron-scale void growth and coalescence are similar between the unirradiated and irradiated copper. However, an acceleration of void growth is observed in the later case, resulting in earlier coalescence, which is consistent with the decrease of fracture toughness reported in irradiated materials. These results are qualitatively reproduced with numerical simulations accounting for irradiation macroscopic hardening and decrease of strain-hardening capability.

قيم البحث

اقرأ أيضاً

Pinning interaction between a screw dislocation and a void in fcc copper is investigated by means of molecular dynamics simulation. A screw dislocation bows out to undergo depinning on the original glide plane at low temperatures, where the behavior of the depinning stress is consistent with that obtained by a continuum model. If the temperature is higher than 300 K, the motion of a screw dislocation is no longer restricted to a single glide plane due to cross slip on the void surface. Several depinning mechanisms that involve multiple glide planes are found. In particular, a depinning mechanism that produces an intrinsic prismatic loop is found. We show that these complex depinning mechanisms significantly increase the depinning stress.
Atomistic simulations are performed to probe the anisotropic deformation in the compressions of face-centred-cubic metallic nanoparticles. In the elastic regime, the compressive load-depth behaviors can be characterized by the classical Hertzian mode l or flat punch model, depending on the surface configuration beneath indenter. On the onset of plasticity, atomic-scale surface steps serve as the source of heterogeneous dislocation in nanoparticle, which is distinct from indenting bulk materials. Under [111] compression, the gliding of jogged dislocation takes over the dominant plastic deformation. The plasticity is governed by nucleation and exhaustion of extended dislocation ribbons in [110] compression. Twin boundary migration mainly sustain the plastic deformation under [112] compression. This study is helpful to extract the mechanical properties of metallic nanoparticles and understand their anisotropic deformation behaviors.
Understanding the mechanisms of plasticity in structural steels is essential for the operation of next-generation fusion reactors. Elemental composition, particularly the amount of Cr present, and irradiation can have separate and synergistic effects on the mechanical properties of ferritic/martensitic steels. The study of ion-irradiated FeCr alloys is useful for gaining a mechanistic understanding of irradiation damage in steels. Previous studies of ion-irradiated FeCr did not clearly distinguish between the nucleation of dislocations to initiate plasticity, and their propagation through the material as plasticity progresses. In this study, Fe3Cr, Fe5Cr, and Fe10Cr were irradiated with 20 MeV Fe$^{3+}$ ions at room temperature to nominal doses of 0.01 dpa and 0.1 dpa. Nanoindentation was carried out with Berkovich and spherical indenter tips to study the nucleation of dislocations and their subsequent propagation. The presence of irradiation-induced defects reduced the theoretical shear stress and barrier for dislocation nucleation. The presence of Cr further enhanced this effect due to increased retention of irradiation defects. However, this combined effect is still small compared to dislocation nucleation from pre-existing sources such as Frank-Read sources and grain boundaries. The yield strength, an indicator of dislocation mobility, of FeCr increased with irradiation damage and Cr. The increased retention of irradiation defects due to the presence of Cr also further increased the yield strength. Reduced work hardening capacity was also observed following irradiation. The synergistic effects of Cr and irradiation damage in FeCr appear to be more important for the propagation of dislocations, rather than their nucleation.
Stochastic inhomogeneous oxidation is an inherent characteristic of copper (Cu), often hindering color tuning and bandgap engineering of oxides. Coherent control of the interface between metal and metal oxide remains unresolved. We demonstrate cohere nt propagation of an oxidation front in single-crystal Cu thin film to achieve a full-color spectrum for Cu by precisely controlling its oxide-layer thickness. Grain boundary-free and atomically flat films prepared by atomic-sputtering epitaxy allow tailoring of the oxide layer with an abrupt interface via heat treatment with a suppressed temperature gradient. Color tuning of nearly full-color RGB indices is realized by precise control of oxide-layer thickness; our samples covered ~50.4% of the sRGB color space. The color of copper/copper oxide is realized by the reconstruction of the quantitative yield color from oxide pigment (complex dielectric functions of Cu2O) and light-layer interference (reflectance spectra obtained from the Fresnel equations) to produce structural color. We further demonstrate laser-oxide lithography with micron-scale linewidth and depth through local phase transformation to oxides embedded in the metal, providing spacing necessary for semiconducting transport and optoelectronics functionality.
Two new phases YbCu4.4 and YbCu4.25 are found as a result of careful phase diagram investigations. Between the congruent and peritectic formation of YbCu4.5 and YbCu3.5, respectively, the phases YbCu4.4 and YbCu4.25 are formed peritectically at 934(2 )degC and 931(3)degC. Crystal growth was realised using a Bridgman technique and single crystalline grains of about 50-100 10^{-6}m were analyzed by electron diffraction and single crystal X-ray diffraction. Due to the only slight differences in both compositions and formation temperatures the growth of larger single crystals of a defined superstructure is challenging. The compounds YbCu4.4 and YbCu4.25 fit in Cerny`s (J. Solid State Chem. 174 (2003) 125) building principle {(RECu5)n(RECu2)} where RE = Yb with n = 4 and 3. YbCu4.4 and YbCu4.25 base on AuBe5/MgCu2-type substructures and contain approximately 4570 and 2780 atoms per unit cell. The new phases close the gap in the series of known copper-rich rare earth compounds for n = 1, 2 (DyCu3.5, DyCu4.0) and n = 5 (YbCu4.5, DyCu4.5).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا