ترغب بنشر مسار تعليمي؟ اضغط هنا

Color of Copper/Copper oxide

311   0   0.0 ( 0 )
 نشر من قبل Jegon Lee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic inhomogeneous oxidation is an inherent characteristic of copper (Cu), often hindering color tuning and bandgap engineering of oxides. Coherent control of the interface between metal and metal oxide remains unresolved. We demonstrate coherent propagation of an oxidation front in single-crystal Cu thin film to achieve a full-color spectrum for Cu by precisely controlling its oxide-layer thickness. Grain boundary-free and atomically flat films prepared by atomic-sputtering epitaxy allow tailoring of the oxide layer with an abrupt interface via heat treatment with a suppressed temperature gradient. Color tuning of nearly full-color RGB indices is realized by precise control of oxide-layer thickness; our samples covered ~50.4% of the sRGB color space. The color of copper/copper oxide is realized by the reconstruction of the quantitative yield color from oxide pigment (complex dielectric functions of Cu2O) and light-layer interference (reflectance spectra obtained from the Fresnel equations) to produce structural color. We further demonstrate laser-oxide lithography with micron-scale linewidth and depth through local phase transformation to oxides embedded in the metal, providing spacing necessary for semiconducting transport and optoelectronics functionality.



قيم البحث

اقرأ أيضاً

The interaction between graphene and metals represents an important issue for the large-area preparation of graphene, graphene transfer and the contact quality in graphene devices. We demonstrate a simple method for estimating and manipulating the le vel of interaction between graphene and copper single crystals through heat treatment, at temperatures from 298K to 1073K. We performed an in-situ Raman spectroscopy showing Cu face-specific behavior of the overlying graphene during the heat treatment. On Cu(111) the interaction is consistent with theoretical predictions and remains stable, whereas on Cu(100) and Cu(110), the initially very weak interaction and charge transfer can be tuned by heating. Our results also suggest that graphene grown on Cu(100) and Cu(110) is detached from the copper substrate, thereby possibly enabling an easier graphene transfer process as compared to Cu (111).
We report the results of X-ray spectroscopy and Raman measurements of as-prepared graphene on a high quality copper surface and the same materials after 1.5 years under different conditions (ambient and low humidity). The obtained results were compar ed with density functional theory calculations of the formation energies and electronic structures of various structural defects in graphene/Cu interfaces. For evaluation of the stability of the carbon cover, we propose a two-step model. The first step is oxidation of the graphene, and the second is perforation of graphene with the removal of carbon atoms as part of the carbon dioxide molecule. Results of the modeling and experimental measurements provide evidence that graphene grown on high-quality copper substrate becomes robust and stable in time (1.5 years). However, the stability of this interface depends on the quality of the graphene and the number of native defects in the graphene and substrate. The effect of the presence of a metallic substrate with defects on the stability and electronic structure of graphene is also discussed.
We present a thermodynamic description of crystal plasticity. Our formulation is based on the Langer-Bouchbinder-Lookman thermodynamic dislocation theory (TDT), which asserts the fundamental importance of an effective temperature that describes the s tate of configurational disorder and therefore the dislocation density of the crystalline material. We extend the TDT description from isotropic plasticity to crystal plasticity with many slip systems. Finite-element simulations show favourable comparison with experiments on polycrystal fcc copper under uniaxial compression, tension, and simple shear. The thermodynamic theory of crystal plasticity thus provides a thermodynamically consistent and physically rigorous description of dislocation motion in crystals. We also discuss new insights about the interaction of dislocations belonging to different slip systems.
Averievite, Cu$_5$V$_2$O$_{10}$(CsCl), is an oxide mineral composed of Cu$^{2+}$ kagome layers sandwiched by Cu$^{2+}$-V$^{5+}$ honeycomb layers. We have synthesized this oxide and investigated its properties from ab initio calculations along with su sceptibility and specific heat measurements. The data indicate a Curie-Weiss temperature of 185 K as well as long-range magnetic order at 24 K due to the significant interlayer coupling from the honeycomb copper ions. This order is suppressed by substituting these coppers by isoelectronic zinc, suggesting that Zn-substituted averievite is a promising spin liquid candidate. A further proposed substitution that replaces V$^{5+}$ by Ti$^{4+}$ not only dopes the material, but is predicted to give rise to a two-dimensional electronic structure featuring Dirac crossings. As such, averievite is an attractive platform for S=1/2 kagome physics with the potential for realizing novel electronic states.
85 - W.M.Li , J.F.Zhao , L.P.Cao 2018
The mechanism of superconductivity in cuprates remains one of the big challenges of condensed matter physics.High Tc cuprates crystallize into layered perovskite structure featuring copper oxygen octahedral coordination. Due to the Jahn Teller effect in combination with the strong static Coulomb interaction, the octahedra in high Tc cuprates are elongated along the c axis, leading to a 3dx2-y2 orbital at the top of the band structure wherein the doped holes reside.This scenario gives rise to two dimensional characteristics in high Tc cuprates that favor d wave pairing symmetry. Here we report superconductivity in a cuprate Ba2CuO4-y wherein the local octahedron is in a very exceptional compressed version.The Ba2CuO4-y compound was synthesized at high pressure at high temperatures, and shows bulk superconductivity with critical temperature Tc above 70 K at ambient conditions. This superconducting transition temperature is more than 30 K higher than the Tc for the isostructural counterparts based on classical La2CuO4. X-ray absorption measurements indicate the heavily doped nature of the Ba2CuO4-y superconductor. In compressed octahedron the 3d3z2-r2 orbital will be lifted above the 3dx2-y2 orbital, leading to significant three dimensional nature in addition to the conventional 3dx2-y2 orbital. This work sheds important new light on advancing our comprehensive understanding of the superconducting mechanism of high Tc in cuprate materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا