ﻻ يوجد ملخص باللغة العربية
Two new phases YbCu4.4 and YbCu4.25 are found as a result of careful phase diagram investigations. Between the congruent and peritectic formation of YbCu4.5 and YbCu3.5, respectively, the phases YbCu4.4 and YbCu4.25 are formed peritectically at 934(2)degC and 931(3)degC. Crystal growth was realised using a Bridgman technique and single crystalline grains of about 50-100 10^{-6}m were analyzed by electron diffraction and single crystal X-ray diffraction. Due to the only slight differences in both compositions and formation temperatures the growth of larger single crystals of a defined superstructure is challenging. The compounds YbCu4.4 and YbCu4.25 fit in Cerny`s (J. Solid State Chem. 174 (2003) 125) building principle {(RECu5)n(RECu2)} where RE = Yb with n = 4 and 3. YbCu4.4 and YbCu4.25 base on AuBe5/MgCu2-type substructures and contain approximately 4570 and 2780 atoms per unit cell. The new phases close the gap in the series of known copper-rich rare earth compounds for n = 1, 2 (DyCu3.5, DyCu4.0) and n = 5 (YbCu4.5, DyCu4.5).
We present a tutorial on the principles of crystal growth of intermetallic and oxide compounds from molten solutions, with an emphasis on the fundamental principles governing the underlying phase equilibria and phase diagrams of multicomponent systems.
The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows to monitor the growth of oxide thin films even at high oxygen pressure.
alpha-Fe single crystals of rhombic dodecahedral habit were grown from a melt of Li$_{84}$N$_{12}$Fe$_{sim 3}$. Crystals of several millimeter along a side form at temperatures around $T approx 800^circ$C. Upon further cooling the growth competes wit
Crystal and magnetic structures of a series of novel quantum spin trimer system Ca3Cu3xNix(PO4)4 (x=0,1,2) were studied by neutron powder diffraction at the temperatures 1.5-290 K. The composition with one Ni per trimer (x=1) has a monoclinic structu
The resistive and reactive components of magneto-impedance (MI) for Finemet/Copper/Finemet sandwiched structures based on stress-annealed nanocrystalline Fe75Si15B6Cu1Nb3 ribbons as functions of different fields (longitudinal and perpendicular) and f