ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean field conditions for coalescing random walks

94   0   0.0 ( 0 )
 نشر من قبل Roberto Imbuzeiro Oliveira
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The main results in this paper are about the full coalescence time $mathsf{C}$ of a system of coalescing random walks over a finite graph $G$. Letting $mathsf{m}(G)$ denote the mean meeting time of two such walkers, we give sufficient conditions under which $mathbf{E}[mathsf{C}]approx 2mathsf{m}(G)$ and $mathsf{C}/mathsf{m}(G)$ has approximately the same law as in the mean field setting of a large complete graph. One of our theorems is that mean field behavior occurs over all vertex-transitive graphs whose mixing times are much smaller than $mathsf{m}(G)$; this nearly solves an open problem of Aldous and Fill and also generalizes results of Cox for discrete tori in $dgeq2$ dimensions. Other results apply to nonreversible walks and also generalize previous theorems of Durrett and Cooper et al. Slight extensions of these results apply to voter model consensus times, which are related to coalescing random walks via duality. Our main proof ideas are a strengthening of the usual approximation of hitting times by exponential random variables, which give results for nonstationary initial states; and a new general set of conditions under which we can prove that the hitting time of a union of sets behaves like a minimum of independent exponentials. In particular, this will show that the first meeting time among $k$ random walkers has mean $approxmathsf{m}(G)/bigl({matrix{k 2}}bigr)$.

قيم البحث

اقرأ أيضاً

121 - J. Beltran , E. Chavez , C. Landim 2018
Let $mathbb{T}^d_N$, $dge 2$, be the discrete $d$-dimensional torus with $N^d$ points. Place a particle at each site of $mathbb{T}^d_N$ and let them evolve as independent, nearest-neighbor, symmetric, continuous-time random walks. Each time two parti cles meet, they coalesce into one. Denote by $C_N$ the first time the set of particles is reduced to a singleton. Cox [6] proved the existence of a time-scale $theta_N$ for which $C_N/theta_N$ converges to the sum of independent exponential random variables. Denote by $Z^N_t$ the total number of particles at time $t$. We prove that the sequence of Markov chains $(Z^N_{ttheta_N})_{tge 0}$ converges to the total number of partitions in Kingmans coalescent.
We prove new results on lazy random walks on finite graphs. To start, we obtain new estimates on return probabilities $P^t(x,x)$ and the maximum expected hitting time $t_{rm hit}$, both in terms of the relaxation time. We also prove a discrete-time v ersion of the first-named authors ``Meeting time lemma~ that bounds the probability of random walk hitting a deterministic trajectory in terms of hitting times of static vertices. The meeting time result is then used to bound the expected full coalescence time of multiple random walks over a graph. This last theorem is a discrete-time version of a result by the first-named author, which had been previously conjectured by Aldous and Fill. Our bounds improve on recent results by Lyons and Oveis-Gharan; Kanade et al; and (in certain regimes) Cooper et al.
Begin continuous time random walks from every vertex of a graph and have particles coalesce when they collide. We use a duality relation with the voter model to prove the process is site recurrent on bounded degree graphs, and for Galton-Watson trees whose offspring distribution has exponential tail. We prove bounds on the occupation probability of a site, as well as a general 0-1 law. Similar conclusions hold for a coalescing process on trees where particles do not backtrack.
Coalescing random walk on a unimodular random rooted graph for which the root has finite expected degree visits each site infinitely often almost surely. A corollary is that an opinion in the voter model on such graphs has infinite expected lifetime. Additionally, we deduce an adaptation of our main theorem that holds uniformly for coalescing random walk on finite random unimodular graphs with degree distribution stochastically dominated by a probability measure with finite mean.
A class of interacting particle systems on $mathbb{Z}$, involving instantaneously annihilating or coalescing nearest neighbour random walks, are shown to be Pfaffan point processes for all deterministic initial conditions. As diffusion limits, explic it Pfaffan kernels are derived for a variety of coalescing and annihilating Brownian systems. For Brownian motions on $mathbb{R}$, depending on the initial conditions, the corresponding kernels are closely related to the bulk and edge scaling limits of the Pfaffan point process for real eigenvalues for the real Ginibre ensemble of random matrices. For Brownian motions on $mathbb{R}_{+}$ with absorbing or reflected boundary conditions at zero new interesting Pfaffan kernels appear. We illustrate the utility of the Pfaffan structure by determining the extreme statistics of the rightmost particle for the purely annihilating Brownian motions, and also computing the probability of overcrowded regions for all models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا