ترغب بنشر مسار تعليمي؟ اضغط هنا

On generalized and fractional derivatives and their applications to classical mechanics

65   0   0.0 ( 0 )
 نشر من قبل Angelo B. Mingarelli
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Draft 3) A generalized differential operator on the real line is defined by means of a limiting process. These generalized derivatives include, as a special case, the classical derivative and current studies of fractional differential operators. All such operators satisfy properties such as the sum, product/quotient rules, chain rule, etc. We study a Sturm-Liouville eigenvalue problem with generalized derivatives and show that the general case is actually a consequence of standard Sturm-Liouville Theory. As an application of the developments herein we find the general solution of a generalized harmonic oscillator. We also consider the classical problem of a planar motion under a central force and show that the general solution of this problem is still generically an ellipse, and that this result is true independently of the choice of the generalized derivatives being used modulo a time shift. The previous result on the generic nature of phase plane orbits is extended to the classical gravitational n-body problem of Newton to show that the global nature of these orbits is independent of the choice of the generalized derivatives being used in defining the force law (modulo a time shift). Finally, restricting the generalized derivatives to a special class of fractional derivatives, we consider the question of motion under gravity with and without resistance and arrive at a new notion of time that depends on the fractional parameter. The results herein are meant to clarify and extend many known results in the literature and intended to show the limitations and use of generalized derivatives and corresponding fractional derivatives.



قيم البحث

اقرأ أيضاً

77 - Timur F. Kamalov 2002
Refined are the known descriptions of particle behavior with the help of Hamilton function in the phase space of coordinates and their multiple derivatives. This entails existing of circumstances when at closer distances gravitational effects can pro ve considerably more strong than in case of this situation being calculated with the help of Hamilton function in the phase space of coordinates and their first derivatives. For example, this may be the case if the gravitational potential is described as a power series in 1/r. At short distances the space metrics fluctuations may also be described by a divergent power series; henceforth, these fluctuations at smaller distances also constitute a power series, i.e. they are functions of 1/r. For such functions, the average of the coordinate equals zero if the frame of reference coincides with the point of origin.
In this paper we discuss how the gauge principle can be applied to classical-mechanics models with finite degrees of freedom. The local invariance of a model is understood as its invariance under the action of a matrix Lie group of transformations pa rametrized by arbitrary functions. It is formally presented how this property can be introduced in such systems, followed by modern applications. Furthermore, Lagrangians describing classical-mechanics systems with local invariance are separated in equivalence classes according to their local structures.
This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^varepsilon$ ($varepsilongeq0$). A variety of phenomena, heretofore overlooked, have been discovered such as the existence of infinitely many separatrix trajectories, sequences of critical initial values associated with limiting classical orbits, regions of broken $PT$-symmetric classical trajectories, and a remarkable topological transition at $varepsilon=2$. This investigation is a work in progress and it is not complete; many features of complex trajectories are still under study.
We analyze the relation of the notion of a pluri-Lagrangian system, which recently emerged in the theory of integrable systems, to the classical notion of variational symmetry, due to E. Noether. We treat classical mechanical systems and show that, f or any Lagrangian system with $m$ commuting variational symmetries, one can construct a pluri-Lagrangian 1-form in the $(m+1)$-dimensional time, whose multi-time Euler-Lagrange equations coincide with the original system supplied with $m$ commuting evolutionary flows corresponding to the variational symmetries. We also give a Hamiltonian counterpart of this construction, leading, for any system of commuting Hamiltonian flows, to a pluri-Lagrangian 1-form with coefficients depending on functions in the phase space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا