ﻻ يوجد ملخص باللغة العربية
We analyze the relation of the notion of a pluri-Lagrangian system, which recently emerged in the theory of integrable systems, to the classical notion of variational symmetry, due to E. Noether. We treat classical mechanical systems and show that, for any Lagrangian system with $m$ commuting variational symmetries, one can construct a pluri-Lagrangian 1-form in the $(m+1)$-dimensional time, whose multi-time Euler-Lagrange equations coincide with the original system supplied with $m$ commuting evolutionary flows corresponding to the variational symmetries. We also give a Hamiltonian counterpart of this construction, leading, for any system of commuting Hamiltonian flows, to a pluri-Lagrangian 1-form with coefficients depending on functions in the phase space.
In this paper, we survey our recent results on the variational formulation of nonequilibrium thermodynamics for the finite dimensional case of discrete systems as well as for the infinite dimensional case of continuum systems. Starting with the funda
The main result of this note is a characterization of the Poisson commutativity of Hamilton functions in terms of their principal action functions.
This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^varepsilon$ ($varepsilongeq0$). A variety of phenomena, heretofore overlooked, have
We present a variational approach which shows that the wave functions belonging to quantum systems in different potential landscapes, are pairwise linked to each other through a generalized continuity equation. This equation contains a source term pr
Invariance properties of classes in the variational sequence suggested to Krupka et al. the idea that there should exist a close correspondence between the notions of variationality of a differential form and invariance of its exterior derivative. It