ترغب بنشر مسار تعليمي؟ اضغط هنا

$PT$-symmetric classical mechanics

154   0   0.0 ( 0 )
 نشر من قبل Carl Bender
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^varepsilon$ ($varepsilongeq0$). A variety of phenomena, heretofore overlooked, have been discovered such as the existence of infinitely many separatrix trajectories, sequences of critical initial values associated with limiting classical orbits, regions of broken $PT$-symmetric classical trajectories, and a remarkable topological transition at $varepsilon=2$. This investigation is a work in progress and it is not complete; many features of complex trajectories are still under study.



قيم البحث

اقرأ أيضاً

The S-matrices corresponding to PT-symmetric rho-perturbed operators are defined and calculated by means of an approach based on an operator-theoretical interpretation of the Lax-Phillips scattering theory.
The dynamics of any classical-mechanics system can be formulated in the reparametrization-invariant (RI) form (that is we use the parametric representation for trajectories, ${bf x}={bf x}(tau)$, $t=t(tau)$ instead of ${bf x}={bf x}(t)$). In this ped agogical note we discuss what the quantization rules look like for the RI formulation of mechanics. We point out that in this case some of the rules acquire an intuitively clearer form. Hence the formulation could be an alternative starting point for teaching the basic principles of quantum mechanics. The advantages can be resumed as follows. a) In RI formulation both the temporal and the spatial coordinates are subject to quantization. b) The canonical Hamiltonian of RI formulation is proportional to the quantity $tilde H=p_t+H$, where $H$ is the Hamiltonian of the initial formulation. Due to the reparametrization invariance, the quantity $tilde H$ vanishes for any solution, $tilde H=0$. So the corresponding quantum-mechanical operator annihilates the wave function, $hat{tilde H}Psi=0$, which is precisely the Schrodinger equation $ihbarpartial_tPsi=hat HPsi$. As an illustration, we discuss quantum mechanics of the relativistic particle.
318 - Cesare Tronci 2018
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Ber ry curvature, while its left leg is shown to lead to more general realizations of the density operator which have recently appeared in quantum molecular dynamics. Finally, the paper shows how alternative representations of both the density matrix and the classical density are equivariant momentum maps generating new Clebsch representations for both quantum and classical dynamics. Uhlmanns density matrix and Koopman-von Neumann wavefunctions are shown to be special cases of this construction.
Generalized PT-symmetric operators acting an a Hilbert space $mathfrak{H}$ are defined and investigated. The case of PT-symmetric extensions of a symmetric operator $S$ is investigated in detail. The possible application of the Lax-Phillips scatterin g methods to the investigation of PT-symmetric operators is illustrated by considering the case of 0-perturbed operators.
In this paper we discuss how the gauge principle can be applied to classical-mechanics models with finite degrees of freedom. The local invariance of a model is understood as its invariance under the action of a matrix Lie group of transformations pa rametrized by arbitrary functions. It is formally presented how this property can be introduced in such systems, followed by modern applications. Furthermore, Lagrangians describing classical-mechanics systems with local invariance are separated in equivalence classes according to their local structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا