ﻻ يوجد ملخص باللغة العربية
The current event display system in the offline software of Jiangmen Underground Neutrino Observatory Experiment(JUNO) is based on the ROOT EVE package. We use Unity, a renowned game engine, to improve its performance and make it available on different platforms. Compared to ROOT, Unity provides a more vivid demonstration for high energy physics experiments and can be ported to different platforms easily. We build a tool for event display in JUNO with Unity. It provides us an intuitive way to observe the detector model, the particle trajectories and the hit distributions.
Druid is a dedicated event display designed for the future electron positron linear colliders. Druid takes standard linear collider data files and detector geometry description files as input, it can visualize both physics event and detector geometry
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination
The determination of the neutrino mass hierarchy, whether the $ u _3$ neutrino mass eigenstate is heavier or lighter than the $ u _1$ and $ u _2$ mass eigenstates, is one of the remaining undetermined fundamental aspects of the Standard Model in the
A visualization method based on Unity engine is proposed for the Jiangmen Underground Neutrino Observatory (JUNO) experiment. The method has been applied in development of a new event display tool named ELAINA (Event Live Animation with unIty for Neu
Jiangmen Underground neutrino Observatory (JUNO) is a next generation liquid scintillator neutrino experiment under construction phase in South China. Thanks to the anti-neutrinos produced by the nearby nuclear power plants, JUNO will primarily study