ﻻ يوجد ملخص باللغة العربية
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination.
Jiangmen Underground Neutrino Observatory (JUNO) is designed to determine the neutrino mass hierarchy using a 20 kton liquid scintillator detector. To calibrate detector boundary effect, the Guide Tube Calibration System (GTCS) has been designed to d
This paper describes the design and construction of the automatic calibration unit (ACU) for the JUNO experiment. The ACU is a fully automated mechanical system. It is capable of deploying multiple radioactive sources, an ultraviolet (UV) laser sourc
The determination of the neutrino mass hierarchy, whether the $ u _3$ neutrino mass eigenstate is heavier or lighter than the $ u _1$ and $ u _2$ mass eigenstates, is one of the remaining undetermined fundamental aspects of the Standard Model in the
The current event display system in the offline software of Jiangmen Underground Neutrino Observatory Experiment(JUNO) is based on the ROOT EVE package. We use Unity, a renowned game engine, to improve its performance and make it available on differe
The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline neutrino experiment under construction in China, with the goal to determine the neutrino mass hierarchy. The JUNO electronics readout system consists of an underwater front-end