ﻻ يوجد ملخص باللغة العربية
Jiangmen Underground neutrino Observatory (JUNO) is a next generation liquid scintillator neutrino experiment under construction phase in South China. Thanks to the anti-neutrinos produced by the nearby nuclear power plants, JUNO will primarily study the neutrino mass hierarchy, one of the open key questions in neutrino physics. One key ingredient for the success of the measurement is to use high speed, high resolution sampling electronics located very close to the detector signal. Linearity in the response of the electronics in another important ingredient for the success of the experiment. During the initial design phase of the electronics, a custom design, with the Front-End and Read-Out electronics located very close to the detector analog signal has been developed and successfully tested. The present paper describes the electronics structure and the first tests performed on the prototypes. The electronics prototypes have been tested and they show good linearity response, with a maximum deviation of 1.3% over the full dynamic range (1-1000 p.e.), fulfilling the JUNO experiment requirements.
26,000 3-inch photomultiplier tubes (PMTs) have been produced for Jiangmen Underground Neutrino Observatory (JUNO) by the Hainan Zhanchuang Photonics Technology Co., Ltd (HZC) company in China and passed all acceptance tests with only 15 tubes reject
The STEREO experiment will search for a sterile neutrino by measuring the anti-neutrino energy spectrum as a function of the distance from the source, the ILL nuclear reactor. A dedicated electronic system, hosted in a single microTCA crate, was desi
The current event display system in the offline software of Jiangmen Underground Neutrino Observatory Experiment(JUNO) is based on the ROOT EVE package. We use Unity, a renowned game engine, to improve its performance and make it available on differe
PandaX-4T is a dark matter direct detection experiment located in China jinping underground laboratory. The central apparatus is a dual-phase xenon detector containing 4 ton liquid xenon in the sensitive volume, with about 500 photomultipliers instru
The main goal of the JUNO experiment is the determination of the neutrino mass ordering. To achieve this, an extraordinary energy resolution of at least $3,%$ at $1,$MeV is required for which all parts of the JUNO detector need to meet certain qualit