ﻻ يوجد ملخص باللغة العربية
We have systematically studied the effects of in-plane uniaxial pressure $p$ on the superconducting transition temperature $T_c$ in many iron-based superconductors. The change of $T_c$ with $p$ is composed of linear and nonlinear components. The latter can be described as a quadratic term plus a much smaller fourth-order term. In contrast to the linear component, the nonlinear $p$ dependence of $T_c$ displays a pronounced in-plane anisotropy, which is similar to the anisotropic response of the resistivity to $p$. As a result, it can be attributed to the coupling between the superconducting and nematic orders, in accordance with the expectations of a phenomenological Landau theory. Our results provide direct evidences for the interplay between nematic fluctuations and superconductivity, which may be a common behavior in iron-based superconductors.
Majorana zero mode is an exotic quasi-particle excitation with non-Abelian statistics in topological superconductor systems, and can serve as the cornerstone for topological quantum computation, a new type of fault-tolerant quantum computation archit
Iron-based superconductors are well-known for their intriguing phase diagrams, which manifest a complex interplay of electronic, magnetic and structural degrees of freedom. Among the phase transitions observed are superconducting, magnetic, and sever
The origin of uniaxial and hydrostatic pressure effects on $T_c$ in the single-layered cuprate superconductors is theoretically explored. A two-orbital model, derived from first principles and analyzed with the fluctuation exchange approximation give
We studied iron-based superconductors of various families with critical temperatures covering almost all range $T_C = 9 - 53$ K. In natural arrays of contacts formed in these materials we observed intrinsic multiple Andreev reflections effect (IMARE)
We study the effect of the lattice structure on the spin-fluctuation mediated superconductivity in the iron pnictides adopting the five-band models of several virtual lattice structures of LaFeAsO as well as actual materials such as NdFeAsO and LaFeP